版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
第12章Seaborn
《Python數(shù)據(jù)分析與應(yīng)用》SeabornSeaborn是基于matplotlib的圖形可視化python包,便于做出各種統(tǒng)計圖表。Pandas與Seaborn都是使用matplotlib作圖,但是兩者區(qū)別較大,如下所示:(1)Pandas善于簡單繪圖,而更豐富的圖使用Seaborn繪制。(2)Pandas沒有太多的參數(shù)優(yōu)化圖形,Seaborn提供大量參數(shù)調(diào)整圖形。安裝Seaborn繪圖特色Matplotlib繪圖Seaborn繪圖importmatplotlib.pyplotaspltx=[1,3,5,7,9,11,13,15,17,19]y_bar=[3,4,6,8,9,10,9,11,7,8]y_line=[2,3,5,7,8,9,8,10,6,7]plt.bar(x,y_bar)plt.plot(x,y_line,'-o',color='y‘)importmatplotlib.pyplotaspltx=[1,3,5,7,9,11,13,15,17,19]y_bar=[3,4,6,8,9,10,9,11,7,8]y_line=[2,3,5,7,8,9,8,10,6,7]importseabornassnssns.set()#聲明使用Seaborn樣式plt.bar(x,y_bar)plt.plot(x,y_line,'-o',color='y‘)相比于Matplotlib默認(rèn)的純白色背景,Seaborn默認(rèn)的淺灰色網(wǎng)格背景看起來的確要細(xì)膩舒適一些。而柱狀圖的色調(diào)、坐標(biāo)軸的字體大小也都有一些變化。圖表分類(1)矩陣圖(2)回歸圖(3)關(guān)聯(lián)圖(4)類別圖(5)分布圖數(shù)據(jù)集seaborn內(nèi)置數(shù)據(jù)集,包括常見的泰坦尼克、鳶尾花等經(jīng)典數(shù)據(jù)集。
使用load_dataset函數(shù)調(diào)用數(shù)據(jù)集。繪圖設(shè)置繪圖元素主題設(shè)置調(diào)色板設(shè)置繪圖元素
seaborn通過set_context方法設(shè)置繪圖元素參數(shù),主要影響標(biāo)簽、線條和其他元素的效果,與style有點區(qū)別,不會影響整體的風(fēng)格。語法如下所示:seaborn.set_context(context=None,font_scale=1,rc=None)主題設(shè)置Seaborn通過set_style設(shè)置darkgrid,whitegrid,dark,white,ticks5種主題風(fēng)格。其中,white和ticks包含沒有必要的上邊框和右邊框。另外,sns.despine()用于去掉圖形右邊和上面的邊線。調(diào)色板顏色不但代表各種特征,而且提高整個圖的觀賞性。Seaborn使用color_palette函數(shù)實現(xiàn)分類色板。繪圖seaborn共有5個大類21種圖。(1)關(guān)系類圖表(Relationalplots)(2)分類圖表(Categoricalplots)(3)分布圖(Distributionplot)(4)回歸圖(Regressionplots)(5)矩陣圖(Matrixplots)直方圖Seaborn提供distplot函數(shù)實現(xiàn)importnumpyasnpimportmatplotlib.pyplotaspltimportseabornassns#生成100個成標(biāo)準(zhǔn)正態(tài)分布的隨機數(shù)x=np.random.normal(size=100)
#kde=True,進行核密度估計sns.distplot(x,kde=True)#密度曲線KDEplt.show()核密度圖
核密度圖一般與直方圖搭配使用,顯示數(shù)據(jù)的分布的“疏密程度”,核密度圖顯示為擬合后的曲線,“峰”越高表示數(shù)據(jù)越“密集”。Seaborn提供kdeplot函數(shù)實現(xiàn)。importnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsnp.random.seed(4)#設(shè)置隨機數(shù)種子Gaussian=np.random.normal(0,1,1000)#創(chuàng)建一組平均數(shù)為0,標(biāo)準(zhǔn)差為1,總個數(shù)為1000的符合標(biāo)準(zhǔn)正態(tài)分布的數(shù)據(jù)ax.hist(Gaussian,bins=25,histtype="stepfilled",normed=True,alpha=0.6)sns.kdeplot(Gaussian,shade=True)plt.show()散點圖Seaborn提供stripplot函數(shù)實現(xiàn)。importseabornassnsimportmatplotlib.pyplotaspltsns.set(style="whitegrid",color_codes=True)tips=sns.load_dataset("tips")#“小費”數(shù)據(jù)集sns.stripplot(data=tips)plt.show()箱型圖Seaborn提供boxplot函數(shù)實現(xiàn)。importseabornassnsimportmatplotlib.pyplotasplt
sns.set_style("whitegrid")tips=sns.load_dataset("tips")#載入自帶數(shù)據(jù)集“tips”,研究三個變量關(guān)系,是否抽煙與日期為分類變量,消費是連續(xù)變量#結(jié)論發(fā)現(xiàn)吸煙者在周末消費明顯大于不吸煙的人ax=sns.boxplot(x="day",y="total_bill",hue="smoker",data=tips,palette="Set3")plt.show()小提琴圖
小提琴圖其實是箱線圖與核密度圖的結(jié)合,箱線圖展示了分位數(shù)的位置,小提琴圖用于展示任意位置的密度。通過小提琴圖可以知道哪些位置的密度較高。在小提琴圖中,白點是中位數(shù),黑色盒形的范圍是上四分位點和下四分位點,細(xì)黑線表示須,表示離群點的離群程度,越長表示離群點越遠(yuǎn)。鳶尾花(Iris)數(shù)據(jù)集每類50個數(shù)據(jù),每個數(shù)據(jù)包含花萼長度(sepallength)、花萼寬度(sepalwidth)、花瓣長度(petallength)、花瓣寬度(petalwidth)4個屬性條形圖Seaborn提供barplot函數(shù)實現(xiàn)。importseabornassnsimportnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltx=np.arange(8)y=np.array([1,5,3,6,2,4,5,6])df=pd.DataFrame({"x-axis":x,"y-axis":y})sns.barplot("x-axis","y-axis",palette="RdBu_r",data=df)plt.xticks(rotation=90)plt.show()熱力圖Seaborn提供heatmap函數(shù)實現(xiàn)。importnumpyasnp;np.random.seed(0)importseabornassns;sns.set()importmatplotlib.pyplotaspltuniform_data=np.random.rand(10,12)f,ax=plt.subplots(figsize=(9,6))ax=sns.heatmap(uniform_data)plt.show()點圖Seaborn提供pointplot函數(shù)實現(xiàn)。importmatplotlib.pyplotaspltimportseabornassnsplt.figure(dpi=150)tips=sns.load_dataset("tips")sns.pointplot(x="time",y="total_bill",data=tips)多變量圖Seaborn提供jointplot函數(shù)實現(xiàn)。importseabornassnsimportmatplotlib.pyplotasplt
data=sns.load_dataset("exercise")sns.jointplot(x="id",y="pulse",data=data)plt.sh
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版:融資租賃合同
- 2024年某商業(yè)大廈消防系統(tǒng)工程承包合同版B版
- 2025專利實施許可合同2
- 2025產(chǎn)品代加工合同范文
- 研發(fā)中心土地租賃合同鄉(xiāng)鎮(zhèn)
- 2025不動產(chǎn)贈與合同
- 食品加工廠設(shè)備維護
- 醫(yī)療器械銷售代表招聘協(xié)議
- 精密儀器批次管理辦法
- 河北省邢臺市2024屆高三上學(xué)期期末考試數(shù)學(xué)試題(解析版)
- 2014光伏發(fā)電站功率控制能力檢測技術(shù)規(guī)程
- 第15課 有創(chuàng)意的書(說課稿)2022-2023學(xué)年美術(shù)四年級上冊 人教版
- 2023年上海交通大學(xué)827材料科學(xué)基礎(chǔ)試題
- 信訪面試資料
- 焊接工藝評定轉(zhuǎn)化表
- 《報告文學(xué)研究》(07562)自考考試復(fù)習(xí)題庫(含答案)
- 拼多多運營合作合同范本
- 小學(xué)英語-module10 unit2 eat vegetables every day教學(xué)設(shè)計學(xué)情分析教材分析課后反思
- Unit3Timeschange!Period1Startingout教案-高中英語外研版選擇性
- 全國大學(xué)英語四、六級考試缺考申請表
- 美國特朗普-課件
評論
0/150
提交評論