版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省紹興市嵊州市2025屆高三下第一次測試數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若集合,則()A. B.C. D.2.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則3.把函數(shù)圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,再將圖象向右平移個單位,那么所得圖象的一個對稱中心為()A. B. C. D.4.設點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.5.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.26.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設小王和外賣小哥都在12:00~12:10之間隨機到達小王所居住的樓下,則小王在樓下等候外賣小哥的時間不超過5分鐘的概率是()A. B. C. D.7.已知分別為雙曲線的左、右焦點,點是其一條漸近線上一點,且以為直徑的圓經過點,若的面積為,則雙曲線的離心率為()A. B. C. D.8.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知F是雙曲線(k為常數(shù))的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.210.世紀產生了著名的“”猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果是奇數(shù),則將它乘加,不斷重復這樣的運算,經過有限步后,一定可以得到.如圖是驗證“”猜想的一個程序框圖,若輸入正整數(shù)的值為,則輸出的的值是()A. B. C. D.11.是邊長為的等邊三角形,、分別為、的中點,沿把折起,使點翻折到點的位置,連接、,當四棱錐的外接球的表面積最小時,四棱錐的體積為()A. B. C. D.12.對某兩名高三學生在連續(xù)9次數(shù)學測試中的成績(單位:分)進行統(tǒng)計得到折線圖,下面是關于這兩位同學的數(shù)學成績分析.①甲同學的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;②根據甲同學成績折線圖提供的數(shù)據進行統(tǒng)計,估計該同學平均成績在區(qū)間110,120內;③乙同學的數(shù)學成績與測試次號具有比較明顯的線性相關性,且為正相關;④乙同學連續(xù)九次測驗成績每一次均有明顯進步.其中正確的個數(shù)為()A.4 B.3 C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的各項均為正數(shù),記為數(shù)列的前項和,若,,則______.14.復數(shù)為虛數(shù)單位)的虛部為__________.15.在平面直角坐標系中,圓.已知過原點且相互垂直的兩條直線和,其中與圓相交于,兩點,與圓相切于點.若,則直線的斜率為_____________.16.已知拋物線,點為拋物線上一動點,過點作圓的切線,切點分別為,則線段長度的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(,),.(Ⅰ)討論的單調性;(Ⅱ)若對任意的,恒成立,求實數(shù)的取值范圍.18.(12分)第十三屆全國人大常委會第十一次會議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中.為了解某城市居民的垃圾分類意識與政府相關法規(guī)宣傳普及的關系,對某試點社區(qū)抽取戶居民進行調查,得到如下的列聯(lián)表.分類意識強分類意識弱合計試點后試點前合計已知在抽取的戶居民中隨機抽取戶,抽到分類意識強的概率為.(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為居民分類意識的強弱與政府宣傳普及工作有關?說明你的理由;(2)已知在試點前分類意識強的戶居民中,有戶自覺垃圾分類在年以上,現(xiàn)在從試點前分類意識強的戶居民中,隨機選出戶進行自覺垃圾分類年限的調查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,求分布列及數(shù)學期望.參考公式:,其中.下面的臨界值表僅供參考19.(12分)若關于的方程的兩根都大于2,求實數(shù)的取值范圍.20.(12分)某網絡商城在年月日開展“慶元旦”活動,當天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎的方式,抽取了家店鋪進行紅包獎勵.如圖是抽取的家店鋪元旦當天的銷售額(單位:千元)的頻率分布直方圖.(1)求抽取的這家店鋪,元旦當天銷售額的平均值;(2)估計抽取的家店鋪中元旦當天銷售額不低于元的有多少家;(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進行銷售研究,求抽取的店鋪銷售額在中的個數(shù)的分布列和數(shù)學期望.21.(12分)設點分別是橢圓的左,右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點,過點且斜率的直線與橢圓交于兩點,為線段的中點,直線交直線于點,證明:直線.22.(10分)已知.(1)解關于x的不等式:;(2)若的最小值為M,且,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點睛】本題考查求集合的交集運算,掌握交集定義是解題關鍵.2、C【解析】
根據線面的位置關系,結合線面平行的判定定理、平行線的性質進行判斷即可.【詳解】A:當時,也可以滿足∥,b∥,故本命題不正確;B:當時,也可以滿足,,故本命題不正確;C:根據平行線的性質可知:當∥,,時,能得到,故本命題是正確的;D:當時,也可以滿足,b∥,故本命題不正確.故選:C【點睛】本題考查了線面的位置關系,考查了平行線的性質,考查了推理論證能力.3、D【解析】
試題分析:把函數(shù)圖象上各點的橫坐標伸長為原來的倍(縱坐標不變),可得的圖象;再將圖象向右平移個單位,可得的圖象,那么所得圖象的一個對稱中心為,故選D.考點:三角函數(shù)的圖象與性質.4、B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質及橢圓的定義.求解與橢圓性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯(lián)系.5、A【解析】
設,用表示出,求出的值即可得出答案.【詳解】設由,,.故選:A【點睛】本題考查了向量加法、減法以及數(shù)乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎題.6、C【解析】
設出兩人到達小王的時間,根據題意列出不等式組,利用幾何概型計算公式進行求解即可.【詳解】設小王和外賣小哥到達小王所居住的樓下的時間分別為,以12:00點為開始算起,則有,在平面直角坐標系內,如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣小哥的時間不超過5分鐘的概率為:.故選:C【點睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數(shù)學運算能力.7、B【解析】
根據題意,設點在第一象限,求出此坐標,再利用三角形的面積即可得到結論.【詳解】由題意,設點在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經過點,則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【點睛】本題主要考查雙曲線的離心率,解決本題的關鍵在于求出與的關系,屬于基礎題.8、D【解析】
根據面面平行的判定及性質求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質,屬于基礎題.9、D【解析】
分析可得,再去絕對值化簡成標準形式,進而根據雙曲線的性質求解即可.【詳解】當時,等式不是雙曲線的方程;當時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.10、C【解析】
列出循環(huán)的每一步,可得出輸出的的值.【詳解】,輸入,,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)不成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,成立,跳出循環(huán),輸出的值為.故選:C.【點睛】本題考查利用程序框圖計算輸出結果,考查計算能力,屬于基礎題.11、D【解析】
首先由題意得,當梯形的外接圓圓心為四棱錐的外接球球心時,外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進而可根據四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設為梯形的外接圓圓心,當也為四棱錐的外接球球心時,外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點,交于點,連接,點必在上,、分別為、的中點,則必有,,即為直角三角形.對于等腰梯形,如圖:因為是等邊三角形,、、分別為、、的中點,必有,所以點為等腰梯形的外接圓圓心,即點與點重合,如圖,,所以四棱錐底面的高為,.故選:D.【點睛】本題考查四棱錐的外接球及體積問題,關鍵是要找到外接球球心的位置,這個是一個難點,考查了學生空間想象能力和分析能力,是一道難度較大的題目.12、C【解析】
利用圖形,判斷折線圖平均分以及線性相關性,成績的比較,說明正誤即可.【詳解】①甲同學的成績折線圖具有較好的對稱性,最高130分,平均成績?yōu)榈陀?30分,①錯誤;②根據甲同學成績折線圖提供的數(shù)據進行統(tǒng)計,估計該同學平均成績在區(qū)間[110,120]內,②正確;③乙同學的數(shù)學成績與測試次號具有比較明顯的線性相關性,且為正相關,③正確;④乙同學在這連續(xù)九次測驗中第四次、第七次成績較上一次成績有退步,故④不正確.故選:C.【點睛】本題考查折線圖的應用,線性相關以及平均分的求解,考查轉化思想以及計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、63【解析】
對進行化簡,可得,再根據等比數(shù)列前項和公式進行求解即可【詳解】由數(shù)列為首項為,公比的等比數(shù)列,所以63【點睛】本題考查等比數(shù)列基本量的求法,當處理復雜因式時,常用基本方法為:因式分解,約分。但解題本質還是圍繞等差和等比的基本性質14、1【解析】試題分析:,即虛部為1,故填:1.考點:復數(shù)的代數(shù)運算15、【解析】
設:,:,利用點到直線的距離,列出式子,求出的值即可.【詳解】解:由圓,可知圓心,半徑為.設直線:,則:,圓心到直線的距離為,,.圓心到直線的距離為半徑,即,并根據垂徑定理的應用,可列式得到,解得.故答案為:.【點睛】本題主要考查點到直線的距離公式的運用,并結合圓的方程,垂徑定理的基本知識,屬于中檔題.16、【解析】
連接,易得,可得四邊形的面積為,從而可得,進而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當最小時,最小,設點,則,所以當時,,則,當點的橫坐標時,,此時,因為隨著的增大而增大,所以的取值范圍為.故答案為:.【點睛】本題考查直線與圓的位置關系的應用,考查拋物線上的動點到定點的距離的求法,考查學生的計算求解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)求導得到,討論和兩種情況,得到答案.(Ⅱ)變換得到,設,求,令,故在單調遞增,存在使得,,計算得到答案.【詳解】(Ⅰ)(),當時,在單調遞減,在單調遞增;當時,在單調遞增,在單調遞減.(Ⅱ)(),即,().令(),則,令,,故在單調遞增,注意到,,于是存在使得,可知在單調遞增,在單調遞減.∴.綜上知,.【點睛】本題考查了函數(shù)的單調性,恒成立問題,意在考查學生對于導數(shù)知識的綜合應用能力.18、(1)有的把握認為居民分類意識強與政府宣傳普及工作有很大關系.見解析(2)分布列見解析,期望為1.【解析】
(1)由在抽取的戶居民中隨機抽取戶,抽到分類意識強的概率為可得列聯(lián)表,然后計算后可得結論;(2)由已知的取值分別為,分別計算概率得分布列,由公式計算出期望.【詳解】解:(1)根據在抽取的戶居民中隨機抽取戶,到分類意識強的概率為,可得分類意識強的有戶,故可得列聯(lián)表如下:分類意識強分類意識弱合計試點后試點前合計因為的觀測值,所以有的把握認為居民分類意識強與政府宣傳普及工作有很大關系.(2)現(xiàn)在從試點前分類意識強的戶居民中,選出戶進行自覺垃圾分類年限的調查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,則0,1,2,3,故,,,,則的分布列為.【點睛】本題考查獨立性檢驗,考查隨機變量的概率分布列和數(shù)學期望.考查學生的數(shù)據處理能力和運算求解能力.19、【解析】
先令,根據題中條件得到,求解,即可得出結果.【詳解】因為關于的方程的兩根都大于2,令所以有,解得,所以.【點睛】本題主要考查一元二次方程根的分布問題,熟記二次函數(shù)的特征即可,屬于常考題型.20、(1)元;(2)32家;(3)分布列見解析;【解析】
(1)根據頻率分布直方圖求出各組頻率,再由平均數(shù)公式,即可求解;(2)求出的頻率即可;(3)中的個數(shù)的所有可能取值為,,,求出可能值的概率,得到分布列,由期望公式即可求解.【詳解】(1)頻率分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江經濟職業(yè)技術學院《房地產市場理論與實務》2023-2024學年第一學期期末試卷
- 中國礦業(yè)大學《中醫(yī)經典綜合實訓》2023-2024學年第一學期期末試卷
- 浙大寧波理工學院《材料與成型》2023-2024學年第一學期期末試卷
- 棗莊職業(yè)學院《塑性加工力學》2023-2024學年第一學期期末試卷
- DB2201T 70-2024 非洲豬瘟病毒環(huán)境監(jiān)測采樣技術規(guī)范
- 數(shù)學游戲演講模板
- 專業(yè)案例(暖通空調專業(yè))-公用設備工程師(暖通空調專業(yè))《專業(yè)案例》押題密卷
- 生命起源理論教學
- 七夕節(jié)青年營銷策略
- 二零二五版交通事故傷殘鑒定及賠償協(xié)議3篇
- 鋼結構施工管理培訓課件
- 2024年度工程建設項目安全評價合同2篇
- 《飛機操縱面》課件
- 商業(yè)咨詢報告范文大全
- 自我發(fā)展與團隊管理課件
- 《婦產科學》課件-17.盆腔器官脫垂
- 監(jiān)理報告范本
- 店鋪交割合同范例
- 大型活動LED屏幕安全應急預案
- 2024年內蒙古包頭市中考道德與法治試卷
- 湖南省長沙市2024-2025學年高二上學期期中考試地理試卷(含答案)
評論
0/150
提交評論