2025屆廣東省廣州市八區(qū)聯(lián)考高三壓軸卷數(shù)學試卷含解析_第1頁
2025屆廣東省廣州市八區(qū)聯(lián)考高三壓軸卷數(shù)學試卷含解析_第2頁
2025屆廣東省廣州市八區(qū)聯(lián)考高三壓軸卷數(shù)學試卷含解析_第3頁
2025屆廣東省廣州市八區(qū)聯(lián)考高三壓軸卷數(shù)學試卷含解析_第4頁
2025屆廣東省廣州市八區(qū)聯(lián)考高三壓軸卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆廣東省廣州市八區(qū)聯(lián)考高三壓軸卷數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若曲線上始終存在兩點,,使得,且的中點在軸上,則正實數(shù)的取值范圍為()A. B. C. D.2.已知橢圓:的左、右焦點分別為,,點,在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.3.一個幾何體的三視圖如圖所示,正視圖、側視圖和俯視圖都是由一個邊長為的正方形及正方形內(nèi)一段圓弧組成,則這個幾何體的表面積是()A. B. C. D.4.已知集合,,則A. B.C. D.5.點為的三條中線的交點,且,,則的值為()A. B. C. D.6.若,,,點C在AB上,且,設,則的值為()A. B. C. D.7.設為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A.1 B. C. D.8.等比數(shù)列中,,則與的等比中項是()A.±4 B.4 C. D.9.復數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發(fā)現(xiàn)三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實上,甲、乙、丙三人的陳述都只對一半,根據(jù)以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路11.已知函數(shù),則方程的實數(shù)根的個數(shù)是()A. B. C. D.12.函數(shù)在上單調遞增,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若一組樣本數(shù)據(jù)7,9,,8,10的平均數(shù)為9,則該組樣本數(shù)據(jù)的方差為______.14.已知橢圓C:1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,橢圓的焦距為2c,過C外一點P(c,2c)作線段PF1,PF2分別交橢圓C于點A、B,若|PA|=|AF1|,則_____.15.設實數(shù),若函數(shù)的最大值為,則實數(shù)的最大值為______.16.邊長為2的菱形中,與交于點O,E是線段的中點,的延長線與相交于點F,若,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,為直線上動點,過點作拋物線:的兩條切線,,切點分別為,,為的中點.(1)證明:軸;(2)直線是否恒過定點?若是,求出這個定點的坐標;若不是,請說明理由.18.(12分)在四棱錐中,底面是邊長為2的菱形,是的中點.(1)證明:平面;(2)設是直線上的動點,當點到平面距離最大時,求面與面所成二面角的正弦值.19.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點,以為折痕將折起,使點到達點位置(平面).(1)若為直線上任意一點,證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.20.(12分)已知函數(shù).(1)討論的零點個數(shù);(2)證明:當時,.21.(12分)選修4-5:不等式選講已知函數(shù).(1)設,求不等式的解集;(2)已知,且的最小值等于,求實數(shù)的值.22.(10分)改革開放年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調查.隨機抽取男女駕駛員各人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示在分以上為交通安全意識強.求的值,并估計該城市駕駛員交通安全意識強的概率;已知交通安全意識強的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關;安全意識強安全意識不強合計男性女性合計用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機選取人對未來一年內(nèi)的交通違章情況進行跟蹤調查,求至少有人得分低于分的概率.附:其中

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù)中點在軸上,設出兩點的坐標,,().對分成三類,利用則,列方程,化簡后求得,利用導數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點的橫坐標互為相反數(shù),不妨設,,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數(shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數(shù)量積為零的坐標表示,考查化歸與轉化的數(shù)學思想方法,考查利用導數(shù)研究函數(shù)的最小值,考查分析與運算能力,屬于較難的題目.2、C【解析】

根據(jù)可得四邊形為矩形,設,,根據(jù)橢圓的定義以及勾股定理可得,再分析的取值范圍,進而求得再求離心率的范圍即可.【詳解】設,,由,,知,因為,在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C【點睛】本題主要考查了橢圓的定義運用以及構造齊次式求橢圓的離心率的問題,屬于中檔題.3、C【解析】

畫出直觀圖,由球的表面積公式求解即可【詳解】這個幾何體的直觀圖如圖所示,它是由一個正方體中挖掉個球而形成的,所以它的表面積為.故選:C【點睛】本題考查三視圖以及幾何體的表面積的計算,考查空間想象能力和運算求解能力.4、D【解析】

因為,,所以,,故選D.5、B【解析】

可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進行數(shù)量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【點睛】本題考查三角形重心的定義及性質,向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運算及向量的數(shù)量積的運算,考查運算求解能力,屬于中檔題.6、B【解析】

利用向量的數(shù)量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用.7、A【解析】

設,因為,得到,利用直線的斜率公式,得到,結合基本不等式,即可求解.【詳解】由題意,拋物線的焦點坐標為,設,因為,即線段的中點,所以,所以直線的斜率,當且僅當,即時等號成立,所以直線的斜率的最大值為1.故選:A.【點睛】本題主要考查了拋物線的方程及其應用,直線的斜率公式,以及利用基本不等式求最值的應用,著重考查了推理與運算能力,屬于中檔試題.8、A【解析】

利用等比數(shù)列的性質可得,即可得出.【詳解】設與的等比中項是.

由等比數(shù)列的性質可得,.

∴與的等比中項

故選A.【點睛】本題考查了等比中項的求法,屬于基礎題.9、C【解析】所對應的點為(-1,-2)位于第三象限.【考點定位】本題只考查了復平面的概念,屬于簡單題.10、D【解析】

甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點睛】本題主要考查了判斷與推理的問題,重點是找到三人中都提到的內(nèi)容進行分類討論,屬于基礎題型.11、D【解析】

畫出函數(shù),將方程看作交點個數(shù),運用圖象判斷根的個數(shù).【詳解】畫出函數(shù)令有兩解,則分別有3個,2個解,故方程的實數(shù)根的個數(shù)是3+2=5個故選:D【點睛】本題綜合考查了函數(shù)的圖象的運用,分類思想的運用,數(shù)學結合的思想判斷方程的根,難度較大,屬于中檔題.12、B【解析】

對分類討論,當,函數(shù)在單調遞減,當,根據(jù)對勾函數(shù)的性質,求出單調遞增區(qū)間,即可求解.【詳解】當時,函數(shù)在上單調遞減,所以,的遞增區(qū)間是,所以,即.故選:B.【點睛】本題考查函數(shù)單調性,熟練掌握簡單初等函數(shù)性質是解題關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

根據(jù)題意,由平均數(shù)公式可得,解得的值,進而由方差公式計算,可得答案.【詳解】根據(jù)題意,數(shù)據(jù)7,9,,8,10的平均數(shù)為9,則,解得:,則其方差.故答案為:1.【點睛】本題考平均數(shù)、方差的計算,考查運算求解能力,求解時注意求出的值,屬于基礎題.14、【解析】

根據(jù)條件可得判斷OA∥PF2,且|PF2|=2|OA|,從而得到點A為橢圓上頂點,則有b=c,解出B的坐標即可得到比值.【詳解】因為|PA|=|AF1|,所以點A是線段PF1的中點,又因為點O為線段F1F2的中點,所以OA∥PF2,且|PF2|=2|OA|,因為點P(c,2c),所以PF2⊥x軸,則|PF2|=2c,所以OA⊥x軸,則點A為橢圓上頂點,所以|OA|=b,則2b=2c,所以b=c,ac,設B(c,m)(m>0),則,解得mc,所以|BF2|c,則.故答案為:2.【點睛】本題考查橢圓的基本性質,考查直線位置關系的判斷,方程思想,屬于中檔題.15、【解析】

根據(jù),則當時,,即.當時,顯然成立;當時,由,轉化為,令,用導數(shù)法求其最大值即可.【詳解】因為,又當時,,即.當時,顯然成立;當時,由等價于,令,,當時,,單調遞增,當時,,單調遞減,,則,又,得,因此的最大值為.故答案為:【點睛】本題主要考查導數(shù)在函數(shù)中的應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.16、【解析】

取基向量,,然后根據(jù)三點共線以及向量加減法運算法則將,表示為基向量后再相乘可得.【詳解】如圖:設,又,且存在實數(shù)使得,,,,,,故答案為:.【點睛】本題考查了平面向量數(shù)量積的性質及其運算,屬中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)直線過定點.【解析】

(1)設出兩點的坐標,利用導數(shù)求得切線的方程,設出點坐標并代入切線的方程,同理將點坐標代入切線的方程,利用韋達定理求得線段中點的橫坐標,由此判斷出軸.(2)求得點的縱坐標,由此求得點坐標,求得直線的斜率,由此求得直線的方程,化簡后可得直線過定點.【詳解】(1)設切點,,,∴切線的斜率為,切線:,設,則有,化簡得,同理可的.∴,是方程的兩根,∴,,,∴軸.(2)∵,∴.∵,∴直線:,即,∴直線過定點.【點睛】本小題主要考查直線和拋物線的位置關系,考查直線過定點問題,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.18、(1)證明見解析(2)【解析】

(1)取中點,連接,根據(jù)菱形的性質,結合線面垂直的判定定理和性質進行證明即可;(2)根據(jù)面面垂直的判定定理和性質定理,可以確定點到直線的距離即為點到平面的距離,結合垂線段的性質可以確定點到平面的距離最大,最大值為1.以為坐標原點,直線分別為軸建立空間直角坐標系.利用空間向量夾角公式,結合同角的三角函數(shù)關系式進行求解即可.【詳解】(1)證明:取中點,連接,因為四邊形為菱形且.所以,因為,所以,又,所以平面,因為平面,所以.同理可證,因為,所以平面.(2)解:由(1)得平面,所以平面平面,平面平面.所以點到直線的距離即為點到平面的距離.過作的垂線段,在所有的垂線段中長度最大的為,此時必過的中點,因為為中點,所以此時,點到平面的距離最大,最大值為1.以為坐標原點,直線分別為軸建立空間直角坐標系.則所以平面的一個法向量為,設平面的法向量為,則即取,則,,所以,所以面與面所成二面角的正弦值為.【點睛】本題考查了線面垂直的判定定理和性質的應用,考查了二面角的向量求法,考查了推理論證能力和數(shù)學運算能力.19、(1)見解析(2)【解析】

(1)根據(jù)中位線證明平面平面,即可證明MH∥平面;(2)以,,為,,軸建立空間直角坐標系,找到點的坐標代入公式即可計算二面角的余弦值.【詳解】(1)證明:連接,∵,,分別為,,的中點,∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)連接,在和中,由余弦定理可得,,由與互補,,,可解得,于是,∴,,∵,直線與直線所成角為,∴,又,∴,即,∴平面,∴平面平面,∵為中點,,∴平面,如圖所示,分別以,,為,,軸建立空間直角坐標系,則,,,,.設平面的法向量為,∴,即.令,則,,可得平面的一個法向量為.又平面的一個法向量為,∴,∴二面角的余弦值為.【點睛】此題考查線面平行,建系通過坐標求二面角等知識點,屬于一般性題目.20、(1)見解析(2)見解析【解析】

(1)求出,分別以當,,時,結合函數(shù)的單調性和最值判斷零點的個數(shù).(2)令,結合導數(shù)求出;同理可求出滿足,從而可得,進而證明.【詳解】解析:(1),,當時,,單調遞減,,,此時有1個零點;當時,無零點;當時,由得,由得,∴在單調遞減,在單調遞增,∴在處取得最小值,若,則,此時沒有零點;若,則,此時有1個零點;若,則,,求導易得,此時在,上各有1個零點.綜上可得時,沒有零點,或時,有1個零點,時,有2個零點.(2)令,則,當時,;當時,,∴.令,則,當時,,當時,,∴,∴,,∴,即.【點睛】本題考查了導數(shù)判斷函數(shù)零點問題,考查了運用導數(shù)證明不等式問題,考查了分類的數(shù)學思想.本題的難點在于第二問不等式的證明中,合理設出函數(shù),通過比較最值證明.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論