




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
§1.4.2正弦函數(shù)余弦函數(shù)的性質(zhì)【教材分析】《正弦函數(shù)和余弦函數(shù)的性質(zhì)》是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材必修4中的內(nèi)容,是正弦函數(shù)和余弦函數(shù)圖像的繼續(xù),本課是根據(jù)正弦曲線余弦曲線這兩種曲線的特點(diǎn)得出正弦函數(shù)和余弦函數(shù)的性質(zhì)?!窘虒W(xué)目標(biāo)】.會(huì)根據(jù)圖象觀察得出正弦函數(shù)、余弦函數(shù)的性質(zhì);會(huì)求含有sinx,cosx的三角式的性質(zhì);會(huì)應(yīng)用正、余弦的值域來(lái)求函數(shù)y=〃sinx+仇。wO)和函數(shù)y=4cos2x+bcosx+c(aw0)的值域.在探究正切函數(shù)基本性質(zhì)和圖像的過(guò)程中,滲透數(shù)形結(jié)合的思想,形成發(fā)現(xiàn)問(wèn)題、提出問(wèn)題、解決問(wèn)題的能力,養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣..在解決問(wèn)題的過(guò)程中,體驗(yàn)克服困難取得成功的喜悅.【教學(xué)重點(diǎn)難點(diǎn)】教學(xué)重點(diǎn):正弦函數(shù)和余弦函數(shù)的性質(zhì)。教學(xué)難點(diǎn):應(yīng)用正、余弦的定義域、值域來(lái)求含有sinx,cosx的函數(shù)的值域【學(xué)情分析】知識(shí)結(jié)構(gòu):在函數(shù)中我們學(xué)習(xí)了如何研究函數(shù),對(duì)于正弦函數(shù)余弦函數(shù)圖像的學(xué)習(xí)使學(xué)生已經(jīng)具備了一定的繪圖技能,類比推理畫(huà)出圖象,并通過(guò)觀察圖象,總結(jié)性質(zhì)的能力。心理特征:高一普通班學(xué)生已掌握三角函數(shù)的誘導(dǎo)公式,并了解了三角函數(shù)的周期性,但學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力還不強(qiáng):能夠通過(guò)討論、合作交流、辯論得到正確的知識(shí)。但在處理問(wèn)題時(shí)學(xué)生考慮問(wèn)題不深入,往往會(huì)造成錯(cuò)誤的結(jié)果?!窘虒W(xué)方法】.學(xué)案導(dǎo)學(xué):見(jiàn)后面的學(xué)案。.新授課教學(xué)基本環(huán)節(jié):預(yù)習(xí)檢查、總結(jié)疑惑一情境導(dǎo)入、展示目標(biāo)一合作探究、精講點(diǎn)撥一反思總結(jié)、當(dāng)堂檢測(cè)一發(fā)導(dǎo)學(xué)案、布置預(yù)習(xí)【課前準(zhǔn)備】.學(xué)生的學(xué)習(xí)準(zhǔn)備:預(yù)習(xí)“正弦函數(shù)和余弦函數(shù)的性質(zhì)”,初步把握性質(zhì)的推導(dǎo)。.教師的教學(xué)準(zhǔn)備:課前預(yù)習(xí)學(xué)案,課內(nèi)探究學(xué)案,課后延伸拓展學(xué)案?!菊n時(shí)安排】1課時(shí)【教學(xué)過(guò)程】一、預(yù)習(xí)檢查、總結(jié)疑惑檢查落實(shí)了學(xué)生的預(yù)習(xí)情況并了解了學(xué)生的疑惑,使教學(xué)具有了針對(duì)性。二、復(fù)習(xí)導(dǎo)入、展ZK目標(biāo)。(一)問(wèn)題情境好習(xí):如何作出正弦函數(shù)、余弦函數(shù)的圖象?生:描點(diǎn)法(幾何法、五點(diǎn)法),圖象變換法。并要求學(xué)生回憶哪五個(gè)關(guān)健點(diǎn)引入:研究一個(gè)函數(shù)的性質(zhì)從哪幾個(gè)方面考慮?生:定義域、值域、單調(diào)性、周期性、對(duì)稱性等提出本節(jié)課學(xué)習(xí)目標(biāo)一一定義域與值域(-)探索研究給出正弦、余弦函數(shù)的圖象,讓學(xué)生觀察,并思考下列問(wèn)題:.定義域正弦函數(shù)、余弦函數(shù)的定義域都是實(shí)數(shù)集H(或(-8,+8))..值域(1)值域因?yàn)檎揖€、余弦線的長(zhǎng)度不大于單位圓的半徑的長(zhǎng)度,所以|sinx|?1,|cosx|<1,即一1<siiix<1,-1<cosx<1也就是說(shuō),正弦函數(shù)、余弦函數(shù)的值域都是[-1,1].(2)最值正弦函數(shù))=sinx,x£R①當(dāng)且僅當(dāng)X=-+2k^k£Z時(shí),取得最大值1允②當(dāng)且僅當(dāng)x=--+2k^keZ時(shí),取得最小值一12余弦函數(shù))=COSX,XER①當(dāng)且僅當(dāng)x=2keZ時(shí),取得最大值1②當(dāng)且僅當(dāng)x=2&乃+萬(wàn)火£Z時(shí),取得最小值一1.周期性由siii(x+2k兀)=sinx,cos(v+2k/r)=cosx,(k£Z)知:正弦函數(shù)值、余弦函數(shù)值是按照一定規(guī)律不斷重復(fù)地取得的.定義:對(duì)于函數(shù)/。),如果存在一個(gè)非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的每一個(gè)值時(shí),都有/(x+T)=/(X),那么函數(shù)/(x)就叫做周期函數(shù),非零常數(shù)T叫做這個(gè)函數(shù)的周期.由此可知,2過(guò)44,…,一2萬(wàn),—4巴…,2女秋&gZ,k豐0)都是這兩個(gè)函數(shù)的周期.對(duì)于一個(gè)周期函數(shù)/0),如果在它所有的周期中存在一個(gè)最小的正數(shù),那么這個(gè)最小正數(shù)就叫做/(x)的最小正周期.根據(jù)上述定義,可知:正弦函數(shù)、余弦函數(shù)都是周期函數(shù),2br(A£Z,AwO)都是它的周期,最小正周期是2%..奇偶性由siii(-x)=-siiix,cos(-x)=cosx可知:y=smx(XGR)為奇函數(shù),其圖象關(guān)于原點(diǎn)O對(duì)稱y=cosx(x£R)為偶函數(shù),其圖象關(guān)于y軸對(duì)稱.對(duì)稱性正弦函數(shù))』sinx(xwR)的對(duì)稱中心是伏陽(yáng)0)伙eZ),對(duì)稱軸是直線工=&萬(wàn)+/(&6Z);余弦函數(shù)y=cosx(xwR)的對(duì)稱中心是(我乃+2,0(k£Z),對(duì)稱軸是直線工=版■(攵£Z)(正(余)弦型函數(shù)的對(duì)稱軸為過(guò)最高點(diǎn)或最低點(diǎn)且垂直于x軸的直線,對(duì)稱中心為圖象與x軸(中軸線)的交點(diǎn))..單調(diào)性從〉=sinx,x£ 的圖象上可看出:元JT當(dāng)X£[-時(shí),曲線逐漸上升,S111X的值由一1增大到122當(dāng)x£[2,2乃]時(shí),曲線逐漸下降,sinx的值由1減小到-122結(jié)合上述周期性可知:正弦函數(shù)在每一個(gè)閉區(qū)間[―]+2攵漢]+2攵幻(k^Z)上都是增函數(shù),其值從一1增大到1;在每一個(gè)閉區(qū)間[1+2攵)尚乃+2&幻(ksZ)上都是減函數(shù),其值從1減小到一1.余弦函數(shù)在每一個(gè)閉區(qū)間[2&乃一《2%句(keZ)上都是增函數(shù),其值從一1增加到1;余弦函數(shù)在每一個(gè)閉區(qū)間[2k《2k/r+司(&eZ)上都是減函數(shù),其值從1減小到—1.三、例題分析例1、求函數(shù)y=sm(2x+g)的單調(diào)增區(qū)間.解析:求函數(shù)的單調(diào)增區(qū)間時(shí),應(yīng)把三角函數(shù)符號(hào)后面的角看成一個(gè)整體,采用換元的方法,化歸到正、余弦函數(shù)的單調(diào)性.解:令z=2x+£,函數(shù)v=smz的單調(diào)增區(qū)間為[一2+2女乃,-+2^^].TOC\o"1-5"\h\z3 2 2由一三十2k/rW2x+三《工+2k冗得一些+k兀三十k7r2 3 2 12 12故函數(shù)y=sinz的單調(diào)增區(qū)間為【一!^+"",S+女乃[(k£Z)點(diǎn)評(píng):“整體思想”解題變式訓(xùn)練L求函數(shù)尸in(-2x+?)的單調(diào)增區(qū)間解:令z=-2x+。函數(shù)v=suiz的單調(diào)減區(qū)間為[工+2攵乃,衛(wèi)+2k門3 2 27元 jr故函數(shù)sin(-2x+1)的單調(diào)增區(qū)間為[一方一一立一女乃](k£Z).例2:判斷函數(shù)/(x)=sm(-x+—)的奇偶性解析:判斷函數(shù)的奇偶性,首先要看定義域是否關(guān)于原點(diǎn)對(duì)稱,然后再看/(X)與/(-五)的關(guān)系,對(duì)(1)用誘導(dǎo)公式化簡(jiǎn)后,更便于判斷.TOC\o"1-5"\h\z布、 ?,3 34、 3x解:?J(x)=sin(-x+——)=-cos——,4 2 4.r/ /3x、 3x??J(T)=-COS(_--)=-COS—4 43 37i所以函數(shù)/(x)=sin(-x+——)為偶函數(shù).4 2點(diǎn)評(píng):判斷函數(shù)的奇偶性時(shí),判斷“定義域是否關(guān)于原點(diǎn)對(duì)稱”是必須的步驟.變式訓(xùn)練2.f(x)=lg(sm.¥+Jl+sufx)解:函數(shù)的定義域?yàn)镽,f(-x)=lg[sm(-x)+Vl+sin^]=lg(-sinx+vl+sin\x)=lg(smx+Jl+su/x)-1=-lg(smx+Jl+sWx)=-f(x)所以函數(shù)/(x)=lg(sinx+Jl+sin^T)為奇函數(shù).例3.比較sin25比、sin260。的大小解析:通過(guò)誘導(dǎo)公式把角度化為同一單調(diào)區(qū)間,利用正弦函數(shù)單調(diào)性比較大小TOC\o"1-5"\h\z解::產(chǎn)smx在[工+2上乃,?+2*4](kez),上是單調(diào)減函數(shù),2 2又250°<260°:.sui250°>sui260°點(diǎn)評(píng):比較同名的三角函數(shù)值的大小,找到單調(diào)區(qū)間,運(yùn)用單調(diào)性即可,若比較更雜,先化間;比較不同名的三角函數(shù)值的大小,應(yīng)先化為同名的三角函數(shù)值,再進(jìn)行比較.變式訓(xùn)練3.cos史■、(:<?出■8 95 15萬(wàn) 14萬(wàn)解:cos >cos 8 9由學(xué)生分析,得到結(jié)論,其他學(xué)生幫助補(bǔ)充、糾正完成。五、反思總結(jié),當(dāng)堂檢測(cè)。教師組織學(xué)生反思總結(jié)本節(jié)課的主要內(nèi)容,并進(jìn)行當(dāng)堂檢測(cè)。課堂小結(jié):1、數(shù)學(xué)知識(shí):正、余弦函數(shù)的圖象性質(zhì),并會(huì)運(yùn)用性質(zhì)解決有關(guān)問(wèn)題2、數(shù)學(xué)思想方法:數(shù)形結(jié)合、整體思想。達(dá)標(biāo)檢測(cè):一、選擇題L函數(shù)y=JTsin2x的奇偶數(shù)性為(
B.偶函數(shù)A.B.偶函數(shù)C.既奇又偶函數(shù) D.非奇非偶函數(shù)TOC\o"1-5"\h\zrr2.下列函數(shù)在弓,句上是增函數(shù)的是( )A.)^=siiir B.C?)=sin2x D.y=cos2xA7r}3.下列四個(gè)函數(shù)中,既是0,-上的增函數(shù),又是以〃為周期的偶函數(shù)的是( ).\z)A.y=smx B.y=sm2x|C.y=|cosx| D.y=|cos2x|二、填空題4.把下列各等式成立的序號(hào)寫(xiě)在后面的橫線上。參考答案:I、A2、D3、A4、④?cosx=>/2 ②參考答案:I
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 三八節(jié)知識(shí)競(jìng)賽
- 安全坐車故事
- 現(xiàn)場(chǎng)總線與PLC網(wǎng)絡(luò)通信圖解項(xiàng)目化教程課件 - 實(shí)例分析
- 《MATLAB的運(yùn)算元》課件
- 《戰(zhàn)略管理導(dǎo)論》課件
- 《迎新春早會(huì)流程》課件
- 《標(biāo)準(zhǔn)差的實(shí)際意義》課件
- 《壟斷競(jìng)爭(zhēng)的市場(chǎng)》課件
- 《微生物和細(xì)胞代謝》課件
- 《秋冬季護(hù)膚與保養(yǎng)》課件
- 企業(yè)承包經(jīng)營(yíng)合同范本
- 2025年01月公安部第三研究所公開(kāi)招聘人民警察筆試筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 光纜線路施工安全協(xié)議書(shū)范本
- 教師讀書(shū)分享《給教師的建議》課件
- 人民警察紀(jì)律條令試卷含答案
- 婚姻矛盾糾紛調(diào)解培訓(xùn)課件
- 《工程熱力學(xué)》(第四版)配套教學(xué)課件
- 2022年北京市專升本英語(yǔ)真題
- 鍺的提取方法
- 有害物質(zhì)管控清單(歐盟)
- 乙酸乙酯的制備ppt課件
評(píng)論
0/150
提交評(píng)論