版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁紹興文理學(xué)院元培學(xué)院
《區(qū)塊鏈技術(shù)及運(yùn)用》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的強(qiáng)化學(xué)習(xí)應(yīng)用中,比如訓(xùn)練一個(gè)智能體在游戲中獲得高分,以下哪個(gè)因素對于學(xué)習(xí)效果和收斂速度可能具有重要影響?()A.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)B.策略網(wǎng)絡(luò)的架構(gòu)C.環(huán)境的復(fù)雜度D.以上都是2、在人工智能的醫(yī)療影像診斷中,假設(shè)要利用深度學(xué)習(xí)模型輔助醫(yī)生進(jìn)行癌癥檢測,以下關(guān)于這種應(yīng)用的描述,正確的是:()A.深度學(xué)習(xí)模型的診斷結(jié)果總是準(zhǔn)確無誤的,可以直接作為最終診斷依據(jù)B.醫(yī)生的經(jīng)驗(yàn)和專業(yè)知識(shí)在與模型的結(jié)合中仍然起著關(guān)鍵作用C.訓(xùn)練模型的數(shù)據(jù)越多,模型在醫(yī)療影像診斷中的表現(xiàn)就一定越好D.醫(yī)療影像診斷中的深度學(xué)習(xí)模型不需要經(jīng)過嚴(yán)格的驗(yàn)證和監(jiān)管3、在一個(gè)利用人工智能進(jìn)行能源管理的系統(tǒng)中,例如優(yōu)化建筑物的能源消耗或電網(wǎng)的調(diào)度,以下哪個(gè)方面的考慮可能是至關(guān)重要的?()A.實(shí)時(shí)數(shù)據(jù)采集和處理B.精準(zhǔn)的預(yù)測模型C.多目標(biāo)優(yōu)化策略D.以上都是4、當(dāng)利用人工智能進(jìn)行欺詐檢測,例如在金融交易中識(shí)別異常行為,以下哪種特征和模型可能是關(guān)鍵的因素?()A.用戶行為特征B.交易模式特征C.復(fù)雜的深度學(xué)習(xí)模型D.以上都是5、人工智能中的圖像超分辨率技術(shù)可以將低分辨率圖像轉(zhuǎn)換為高分辨率圖像。假設(shè)要在保持圖像細(xì)節(jié)的同時(shí)提高超分辨率效果,以下哪個(gè)因素是最關(guān)鍵的?()A.神經(jīng)網(wǎng)絡(luò)的深度B.訓(xùn)練數(shù)據(jù)的質(zhì)量C.損失函數(shù)的選擇D.優(yōu)化器的性能6、人工智能中的語音合成技術(shù)旨在將文本轉(zhuǎn)換為自然流暢的語音。假設(shè)我們要為一款智能語音助手開發(fā)語音合成功能,以下關(guān)于語音合成的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過拼接預(yù)先錄制的語音片段來實(shí)現(xiàn)B.基于深度學(xué)習(xí)的方法能夠生成更自然的語音語調(diào)C.語音合成的質(zhì)量只取決于聲學(xué)模型D.韻律和情感的表達(dá)是語音合成中的重要挑戰(zhàn)7、在人工智能的圖像分割任務(wù)中,需要將圖像劃分成不同的區(qū)域。假設(shè)要對醫(yī)學(xué)影像中的病變區(qū)域進(jìn)行分割,以下關(guān)于圖像分割技術(shù)的描述,正確的是:()A.傳統(tǒng)的圖像分割方法在處理復(fù)雜的醫(yī)學(xué)影像時(shí)效果總是優(yōu)于深度學(xué)習(xí)方法B.深度學(xué)習(xí)中的全卷積神經(jīng)網(wǎng)絡(luò)(FCN)在醫(yī)學(xué)圖像分割中能夠自動(dòng)學(xué)習(xí)特征,具有很大的潛力C.圖像分割的結(jié)果只取決于所使用的算法,與圖像的質(zhì)量和分辨率無關(guān)D.圖像分割技術(shù)在醫(yī)學(xué)領(lǐng)域的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和改進(jìn)8、人工智能在語音識(shí)別領(lǐng)域取得了重大進(jìn)展。假設(shè)要開發(fā)一個(gè)能夠?qū)崟r(shí)將語音轉(zhuǎn)換為文字的系統(tǒng),以下關(guān)于語音識(shí)別的描述,哪一項(xiàng)是不正確的?()A.聲學(xué)模型用于分析語音的聲學(xué)特征,語言模型用于理解語言的語法和語義B.深度神經(jīng)網(wǎng)絡(luò)在語音識(shí)別中能夠提高識(shí)別準(zhǔn)確率和魯棒性C.語音識(shí)別系統(tǒng)在各種環(huán)境和口音條件下都能達(dá)到100%的準(zhǔn)確率D.對大量不同口音和背景噪音的語音數(shù)據(jù)進(jìn)行訓(xùn)練,可以提升系統(tǒng)的適應(yīng)性9、當(dāng)利用人工智能進(jìn)行金融風(fēng)險(xiǎn)評估,例如評估信用風(fēng)險(xiǎn)和市場風(fēng)險(xiǎn),以下哪種模型和特征可能是重要的組成部分?()A.邏輯回歸模型和財(cái)務(wù)指標(biāo)B.決策樹模型和交易數(shù)據(jù)C.深度學(xué)習(xí)模型和宏觀經(jīng)濟(jì)數(shù)據(jù)D.以上都是10、在人工智能的研究中,可解釋性是一個(gè)重要的問題。假設(shè)一個(gè)醫(yī)療決策支持系統(tǒng)基于人工智能模型給出診斷建議。以下關(guān)于模型可解釋性的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可解釋性有助于醫(yī)生和患者理解模型的決策依據(jù),增加信任度B.一些復(fù)雜的深度學(xué)習(xí)模型由于其內(nèi)部運(yùn)作的復(fù)雜性,往往具有較低的可解釋性C.為了提高模型的性能,可以犧牲一定的可解釋性D.可解釋性對于所有類型的人工智能應(yīng)用都是同等重要的,沒有優(yōu)先級(jí)之分11、在人工智能的聚類分析中,例如將客戶按照消費(fèi)行為進(jìn)行分組,假設(shè)數(shù)據(jù)分布不規(guī)則且存在噪聲。以下哪種聚類算法在這種情況下可能表現(xiàn)較好?()A.K-Means聚類算法,基于距離進(jìn)行分組B.層次聚類算法,構(gòu)建層次結(jié)構(gòu)C.密度聚類算法,基于密度進(jìn)行分組D.隨機(jī)聚類算法,隨機(jī)分配數(shù)據(jù)到不同組12、人工智能在醫(yī)療領(lǐng)域的應(yīng)用越來越廣泛。假設(shè)一個(gè)醫(yī)療人工智能系統(tǒng)被用于疾病診斷,它通過分析大量的醫(yī)療影像和患者數(shù)據(jù)來給出診斷建議。以下關(guān)于這種應(yīng)用的描述,正確的是:()A.該系統(tǒng)能夠完全替代醫(yī)生的診斷,因?yàn)槠浠诖髷?shù)據(jù)的分析結(jié)果更準(zhǔn)確B.醫(yī)生仍需對系統(tǒng)的診斷結(jié)果進(jìn)行最終判斷和綜合考量,因?yàn)榇嬖跀?shù)據(jù)偏差和模型局限性C.這種系統(tǒng)只適用于常見疾病的診斷,對于罕見病無能為力D.醫(yī)療人工智能系統(tǒng)的診斷結(jié)果不受數(shù)據(jù)質(zhì)量和算法選擇的影響13、在人工智能的文本分類任務(wù)中,除了傳統(tǒng)的機(jī)器學(xué)習(xí)算法,深度學(xué)習(xí)方法也取得了很好的效果。以下關(guān)于文本分類中深度學(xué)習(xí)方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以自動(dòng)學(xué)習(xí)文本的特征表示B.對于長文本的處理能力優(yōu)于短文本C.不需要進(jìn)行特征工程D.訓(xùn)練數(shù)據(jù)量越大,效果一定越好14、在人工智能的語音合成領(lǐng)域,假設(shè)要生成自然流暢、富有情感的語音,以下關(guān)于語音合成技術(shù)的描述,正確的是:()A.參數(shù)合成方法能夠靈活控制語音的特征,但音質(zhì)相對較差B.拼接合成方法生成的語音自然度高,但需要大量的語音庫支持C.深度學(xué)習(xí)的語音合成模型可以同時(shí)實(shí)現(xiàn)高質(zhì)量和高自然度的語音生成D.語音合成的情感表達(dá)只能通過調(diào)整語音的音調(diào)來實(shí)現(xiàn)15、強(qiáng)化學(xué)習(xí)是人工智能中的一個(gè)重要領(lǐng)域,常用于訓(xùn)練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個(gè)機(jī)器人需要在一個(gè)充滿障礙物的房間里找到通往目標(biāo)位置的路徑,同時(shí)避免碰撞。在這種情況下,以下關(guān)于強(qiáng)化學(xué)習(xí)的說法,哪一項(xiàng)是正確的?()A.智能體通過隨機(jī)嘗試不同的動(dòng)作來學(xué)習(xí)最優(yōu)策略B.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)對學(xué)習(xí)效果沒有太大影響C.強(qiáng)化學(xué)習(xí)不需要考慮環(huán)境的動(dòng)態(tài)變化D.一旦訓(xùn)練完成,智能體在新的環(huán)境中無需重新學(xué)習(xí)就能表現(xiàn)良好16、深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類等任務(wù)中取得了顯著成果。假設(shè)要使用CNN對大量的動(dòng)物圖片進(jìn)行分類。以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)的描述,哪一項(xiàng)是不正確的?()A.卷積層通過卷積操作提取圖像的局部特征B.池化層用于減少特征圖的尺寸,降低計(jì)算量,同時(shí)保留主要特征C.隨著網(wǎng)絡(luò)層數(shù)的增加,CNN的性能一定會(huì)不斷提高D.可以通過調(diào)整卷積核的大小、數(shù)量和網(wǎng)絡(luò)結(jié)構(gòu)來優(yōu)化CNN的性能17、人工智能中的無人駕駛技術(shù)面臨著眾多技術(shù)和法律挑戰(zhàn)。假設(shè)我們在討論無人駕駛汽車的責(zé)任歸屬問題,以下關(guān)于無人駕駛責(zé)任的說法,哪一項(xiàng)是不正確的?()A.事故責(zé)任的判定應(yīng)該綜合考慮多種因素B.完全由無人駕駛汽車的制造商承擔(dān)責(zé)任C.法律法規(guī)需要隨著技術(shù)發(fā)展不斷完善D.乘客在某些情況下也可能承擔(dān)一定責(zé)任18、在人工智能的圖像分割任務(wù)中,假設(shè)要將一幅圖像中的不同物體準(zhǔn)確地分割出來,以下關(guān)于圖像分割方法的描述,正確的是:()A.基于閾值的圖像分割方法簡單快速,但對復(fù)雜圖像的效果不佳B.基于區(qū)域的圖像分割方法能夠處理具有相似特征的區(qū)域,但容易出現(xiàn)過度分割C.基于邊緣檢測的圖像分割方法能夠準(zhǔn)確地找到物體的邊緣,但對噪聲敏感D.以上圖像分割方法各有優(yōu)缺點(diǎn),常常結(jié)合使用以提高分割效果19、在一個(gè)利用人工智能進(jìn)行智能物流配送的系統(tǒng)中,為了實(shí)現(xiàn)高效的路徑規(guī)劃和車輛調(diào)度,以下哪種算法和技術(shù)可能會(huì)被運(yùn)用?()A.遺傳算法B.蟻群算法C.模擬退火算法D.以上都是20、在人工智能的情感計(jì)算中,需要從人的面部表情、語音語調(diào)、文字等多模態(tài)信息中識(shí)別情感。假設(shè)要綜合分析這些多模態(tài)信息來準(zhǔn)確判斷一個(gè)人的情感狀態(tài),以下哪種融合方式是有效的?()A.早期融合,在數(shù)據(jù)層面進(jìn)行整合B.晚期融合,在決策層面進(jìn)行整合C.不進(jìn)行融合,分別處理每個(gè)模態(tài)的信息D.隨機(jī)選擇一種模態(tài)的信息進(jìn)行分析21、人工智能中的語音識(shí)別技術(shù)在智能語音交互中起著重要作用。假設(shè)我們要提高語音識(shí)別系統(tǒng)在嘈雜環(huán)境下的性能,以下關(guān)于解決方法的說法,哪一項(xiàng)是不正確的?()A.使用更先進(jìn)的聲學(xué)模型B.增加訓(xùn)練數(shù)據(jù)的多樣性C.降低語音信號(hào)的采樣率D.采用噪聲抑制技術(shù)22、人工智能中的強(qiáng)化學(xué)習(xí)可以應(yīng)用于機(jī)器人控制。假設(shè)一個(gè)機(jī)器人需要通過強(qiáng)化學(xué)習(xí)學(xué)會(huì)在復(fù)雜環(huán)境中行走和避障,以下關(guān)于機(jī)器人強(qiáng)化學(xué)習(xí)的描述,正確的是:()A.機(jī)器人可以在沒有任何先驗(yàn)知識(shí)的情況下,通過隨機(jī)探索快速學(xué)會(huì)有效的行走和避障策略B.強(qiáng)化學(xué)習(xí)中的獎(jiǎng)勵(lì)設(shè)置對機(jī)器人的學(xué)習(xí)效果沒有關(guān)鍵影響,只要有獎(jiǎng)勵(lì)就行C.結(jié)合機(jī)器人的物理模型和環(huán)境模型,可以為強(qiáng)化學(xué)習(xí)提供更好的先驗(yàn)知識(shí),加速學(xué)習(xí)過程D.機(jī)器人的強(qiáng)化學(xué)習(xí)只適用于簡單的環(huán)境,對于復(fù)雜多變的真實(shí)環(huán)境無法應(yīng)用23、人工智能中的自動(dòng)推理技術(shù)旨在讓計(jì)算機(jī)自動(dòng)進(jìn)行邏輯推理。假設(shè)要開發(fā)一個(gè)能夠自動(dòng)證明數(shù)學(xué)定理的系統(tǒng),以下哪個(gè)挑戰(zhàn)是最難以克服的?()A.定理的復(fù)雜性B.推理規(guī)則的選擇C.知識(shí)的表示和編碼D.計(jì)算資源的需求24、在人工智能的智能推薦系統(tǒng)中,假設(shè)要為用戶提供個(gè)性化的推薦服務(wù),以下關(guān)于推薦算法的描述,正確的是:()A.協(xié)同過濾算法只考慮用戶的歷史行為,不考慮物品的特征B.基于內(nèi)容的推薦算法能夠根據(jù)物品的屬性為用戶推薦相似的物品C.混合推薦算法結(jié)合了多種推薦方法的優(yōu)點(diǎn),能夠提供更準(zhǔn)確的推薦D.以上推薦算法都存在一定的局限性,無法滿足所有用戶的需求25、假設(shè)在一個(gè)智能交通系統(tǒng)中,需要利用人工智能算法來優(yōu)化交通信號(hào)燈的控制,以減少交通擁堵和提高道路通行效率??紤]到實(shí)時(shí)交通流量的變化和復(fù)雜的道路網(wǎng)絡(luò),以下哪種技術(shù)可能是核心?()A.深度學(xué)習(xí)預(yù)測交通流量B.傳統(tǒng)的數(shù)學(xué)優(yōu)化算法C.基于案例的推理D.蒙特卡羅模擬26、人工智能中的遷移學(xué)習(xí)技術(shù)可以利用已有的知識(shí)和模型來解決新的問題。假設(shè)已經(jīng)有一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的卷積神經(jīng)網(wǎng)絡(luò)模型,現(xiàn)在要將其應(yīng)用于一個(gè)新的、但相關(guān)的圖像分類任務(wù)。以下哪種遷移學(xué)習(xí)策略最有可能取得較好的效果?()A.直接使用原模型進(jìn)行預(yù)測B.微調(diào)原模型的部分層C.重新訓(xùn)練一個(gè)新的模型D.對原模型進(jìn)行壓縮27、強(qiáng)化學(xué)習(xí)在機(jī)器人控制中發(fā)揮著重要作用。假設(shè)一個(gè)機(jī)器人需要學(xué)習(xí)在復(fù)雜環(huán)境中行走而不摔倒,以下關(guān)于強(qiáng)化學(xué)習(xí)在該場景中的描述,哪一項(xiàng)是不正確的?()A.機(jī)器人通過與環(huán)境的交互獲得獎(jiǎng)勵(lì)或懲罰,從而調(diào)整自己的行為策略B.設(shè)計(jì)合理的獎(jiǎng)勵(lì)函數(shù)對于機(jī)器人的學(xué)習(xí)效果至關(guān)重要C.強(qiáng)化學(xué)習(xí)可以使機(jī)器人快速適應(yīng)新的環(huán)境和任務(wù),無需重新訓(xùn)練D.機(jī)器人在學(xué)習(xí)過程中可能會(huì)經(jīng)歷多次失敗,但通過不斷嘗試最終能夠?qū)W會(huì)行走28、在人工智能的研究中,強(qiáng)化學(xué)習(xí)被廣泛應(yīng)用于智能體的決策和優(yōu)化問題。假設(shè)一個(gè)智能機(jī)器人需要在復(fù)雜的環(huán)境中學(xué)習(xí)如何行走并避開障礙物,以最快的速度到達(dá)目標(biāo)位置。在這種情況下,以下哪種強(qiáng)化學(xué)習(xí)算法能夠使機(jī)器人更快地學(xué)習(xí)到有效的策略,同時(shí)具有較好的泛化能力?()A.Q-learningB.SARSAC.策略梯度算法D.蒙特卡羅方法29、在人工智能的算法選擇中,需要根據(jù)具體問題和數(shù)據(jù)特點(diǎn)進(jìn)行決策。假設(shè)要解決一個(gè)分類問題,數(shù)據(jù)具有高維度和復(fù)雜的非線性關(guān)系,以下關(guān)于算法選擇的描述,正確的是:()A.線性分類算法如邏輯回歸一定能夠處理這種復(fù)雜的數(shù)據(jù),無需考慮其他算法B.決策樹算法在處理高維度和非線性數(shù)據(jù)時(shí)總是表現(xiàn)最佳C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)對于處理圖像等具有空間結(jié)構(gòu)的數(shù)據(jù)效果顯著,但對于一般的高維數(shù)據(jù)可能不太適用D.支持向量機(jī)(SVM)結(jié)合核函數(shù)能夠有效地處理非線性分類問題,是一個(gè)合適的選擇30、在人工智能的語音識(shí)別任務(wù)中,為了提高在嘈雜環(huán)境下的識(shí)別準(zhǔn)確率,以下哪種技術(shù)或方法可能會(huì)被重點(diǎn)研究和應(yīng)用?()A.聲學(xué)模型的改進(jìn)B.噪聲抑制技術(shù)C.多模態(tài)信息融合D.以上都是二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)利用Python的OpenCV庫,實(shí)現(xiàn)圖像的直方圖均衡化。加載一張圖像,對其進(jìn)行直方圖均衡化處理,展示處理前后圖像的灰度分布和視覺效果。2、(本題5分)利用Python中的Scikit-learn庫,實(shí)現(xiàn)支持向量機(jī)(SVM)算法對文本分類任務(wù)進(jìn)行處理。通過特征工程和選擇合適的核函數(shù),提高SVM模型的分類性能。3、(本題5分)使用聚類算法對生物醫(yī)學(xué)數(shù)據(jù)進(jìn)行分析,發(fā)現(xiàn)不同的疾病亞型和治療反應(yīng),為個(gè)性化醫(yī)療提供支持。4、(本題5分)使用聚類算法對生物數(shù)據(jù)進(jìn)行分析,發(fā)現(xiàn)不同的生物群落和生態(tài)關(guān)系,為生態(tài)保護(hù)和可持續(xù)發(fā)展提供支持。5、(本題5分)在PyTorch中,構(gòu)建一個(gè)基于長短時(shí)記憶網(wǎng)絡(luò)(LSTM)的文本生成模型,能夠生成連貫、有邏輯的文章。研究不同的訓(xùn)練數(shù)據(jù)和超參數(shù)對生成文本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 雙十二購房指南
- 體育用品行業(yè)保安工作總結(jié)
- 軍訓(xùn)心得體會(huì)15篇
- 教育的項(xiàng)目計(jì)劃書精彩3篇
- 建筑工程施工合同范文集合8篇
- 2023年-2024年崗位安全教育培訓(xùn)試題及參考答案【培優(yōu)】
- 文學(xué)作品意識(shí)形態(tài)解讀-洞察分析
- 宇宙常數(shù)與宇宙結(jié)構(gòu)形成-洞察分析
- 遺傳進(jìn)化機(jī)制探究-洞察分析
- 2023-2024學(xué)年廣東省深圳高級(jí)中學(xué)七年級(jí)(上)期末歷史試卷
- 2024年房屋租賃補(bǔ)充協(xié)議參考模板(四篇)
- 婦科宮腔鏡技術(shù)風(fēng)險(xiǎn)評估預(yù)案
- 2024年全國教育大會(huì)精神全文課件
- 寧夏銀川市第一中學(xué)2025屆數(shù)學(xué)高一上期末質(zhì)量檢測模擬試題含解析
- 廣東省深圳市2023-2024學(xué)年三年級(jí)上學(xué)期英語期中試卷(含答案)
- 《4.3.1等比數(shù)列的概念》說課稿
- 2025年高考英語一輪復(fù)習(xí) 詞性轉(zhuǎn)換訓(xùn)練(含答案)
- 睡眠醫(yī)學(xué)課件 睡眠呼吸暫停綜合征
- 合肥長鑫存儲(chǔ)在線測評題2024
- 山東省濟(jì)南市2023-2024學(xué)年高一年級(jí)上冊1月期末考試英語試題(含解析)
評論
0/150
提交評論