Python金融數(shù)據(jù)分析與挖掘(微課版) 課件 3-4.常用函數(shù)_第1頁
Python金融數(shù)據(jù)分析與挖掘(微課版) 課件 3-4.常用函數(shù)_第2頁
Python金融數(shù)據(jù)分析與挖掘(微課版) 課件 3-4.常用函數(shù)_第3頁
Python金融數(shù)據(jù)分析與挖掘(微課版) 課件 3-4.常用函數(shù)_第4頁
Python金融數(shù)據(jù)分析與挖掘(微課版) 課件 3-4.常用函數(shù)_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第3章

數(shù)據(jù)處理包Pandas時(shí)間處理函數(shù)數(shù)據(jù)框合并函數(shù)數(shù)據(jù)框關(guān)聯(lián)函數(shù)時(shí)間處理函數(shù)第3章

to_datetime()函數(shù)主要是將字符串型的日期轉(zhuǎn)換為時(shí)間戳的格式。方便后續(xù)的數(shù)據(jù)處理,比如提取其所屬年份、月份、周數(shù)、日期、小時(shí)、分鐘、秒、星期幾等簡單調(diào)用形式為to_datetime(S,format),其中S為待求的日期字符串或日期字符串列表或日期字符串序列,format為日期字符串格式,默認(rèn)缺省importpandasaspdt1=pd.to_datetime('2015-08-0105:50:43.000001',format='%Y-%m-%d%H:%M:%S.%')t2=pd.to_datetime(['2015-08-0105:50:43','2015-08-0105:51:40'])t3=pd.to_datetime(['2015-08-01','2015-08-02'])t4=pd.to_datetime(pd.Series(['2015-08-01','2015-08-02']))時(shí)間處理函數(shù)第3章

執(zhí)行結(jié)果如下數(shù)據(jù)框合并函數(shù)第3章

對(duì)兩個(gè)數(shù)據(jù)框進(jìn)行水平合并、垂直合并是數(shù)據(jù)處理與整合中常見的操作,這里介紹concat()函數(shù),可以通過設(shè)置軸(Axis)為1或0實(shí)現(xiàn)importpandasaspdimportnumpyasnpdict1={'a':[2,2,'kt',6],'b':[4,6,7,8],'c':[6,5,np.nan,6]}dict2={'d':[8,9,10,11],'e':['p',16,10,8]}dict3={'a':[1,2],'b':[2,3],'c':[3,4],'d':[4,5],'e':[5,6]}df1=pd.DataFrame(dict1)df2=pd.DataFrame(dict2)df3=pd.DataFrame(dict3)deldict1,dict2,dict3df4=pd.concat([df1,df2],axis=1)#水平合并df5=pd.concat([df3,df4],axis=0)#垂直合并,有相同的列名,index屬性伴隨原數(shù)據(jù)框df5.index=range(6)#重新設(shè)置index屬性數(shù)據(jù)框合并函數(shù)第3章

執(zhí)行結(jié)果如下數(shù)據(jù)框關(guān)聯(lián)函數(shù)第3章

merge()函數(shù)類似于數(shù)據(jù)庫中的SQL關(guān)聯(lián)操作語句,指定關(guān)聯(lián)字段之后可進(jìn)行內(nèi)連接(InnerJoin)、左連接(LeftJoin)和右連接(RightJoin)等數(shù)據(jù)操作importpandasaspddict1={'code':['A01','A01','A01','A02','A02','A02','A03','A03'],'month':['01','02','03','01','02','03','01','02'],'price':[10,12,13,15,17,20,10,9]}dict2={'code':['A01','A01','A01','A02','A02','A02'],'month':['01','02','03','01','02','03'],'vol':[10000,10110,20000,10002,12000,21000]}df1=pd.DataFrame(dict1)df2=pd.DataFrame(dict2)deldict1,dict2df_inner=pd.merge(df1,df2,how='inner',on=['code','month']) #內(nèi)連接df_left=pd.merge(df1,df2,how='left',on=['code','month']) #左連接d

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論