下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記。…………密………………封………………線…………第1頁(yè),共1頁(yè)華南師范大學(xué)《數(shù)據(jù)可視化理論與實(shí)踐》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、對(duì)于一個(gè)包含大量數(shù)值型數(shù)據(jù)的數(shù)據(jù)集,若要快速找到數(shù)據(jù)的中位數(shù),以下哪種算法較為高效?()A.排序后取中間值B.基于分治思想的算法C.隨機(jī)選擇算法D.以上算法效率差不多2、數(shù)據(jù)分析中的模型融合可以結(jié)合多個(gè)模型的優(yōu)勢(shì)提高性能。假設(shè)已經(jīng)建立了多個(gè)不同的預(yù)測(cè)模型,如線性回歸、決策樹和隨機(jī)森林,要將它們?nèi)诤弦垣@得更準(zhǔn)確的預(yù)測(cè)結(jié)果。以下哪種模型融合策略在這種情況下更有可能提高預(yù)測(cè)精度?()A.簡(jiǎn)單平均融合B.加權(quán)平均融合C.基于投票的融合D.以上方法效果相同3、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理是一個(gè)重要的步驟。以下關(guān)于數(shù)據(jù)預(yù)處理的目的,錯(cuò)誤的是?()A.去除數(shù)據(jù)中的噪聲和異常值,提高數(shù)據(jù)的質(zhì)量B.統(tǒng)一數(shù)據(jù)的格式和單位,便于后續(xù)的分析和處理C.對(duì)數(shù)據(jù)進(jìn)行編碼和轉(zhuǎn)換,使其適合特定的數(shù)據(jù)分析方法D.增加數(shù)據(jù)的數(shù)量,提高數(shù)據(jù)分析的結(jié)果的可靠性4、關(guān)于數(shù)據(jù)分析中的數(shù)據(jù)降維,假設(shè)數(shù)據(jù)集具有高維度,但其中可能存在冗余和無(wú)關(guān)的特征。為了減少計(jì)算復(fù)雜度并提高分析效率,以下哪種降維方法可能是有效的?()A.主成分分析(PCA),提取主要成分B.線性判別分析(LDA),考慮類別信息C.局部線性嵌入(LLE),保留局部結(jié)構(gòu)D.不進(jìn)行降維,直接處理高維數(shù)據(jù)5、數(shù)據(jù)分析中的因果推斷旨在確定變量之間的因果關(guān)系,而非僅僅是相關(guān)性。假設(shè)你想研究廣告投入與產(chǎn)品銷售之間的關(guān)系,以下關(guān)于因果推斷方法的選擇,哪一項(xiàng)是最關(guān)鍵的?()A.進(jìn)行隨機(jī)對(duì)照實(shí)驗(yàn),控制其他因素來(lái)確定因果關(guān)系B.基于觀察數(shù)據(jù),使用回歸分析來(lái)推斷因果關(guān)系C.僅僅依靠相關(guān)系數(shù)來(lái)判斷因果關(guān)系D.主觀猜測(cè)和經(jīng)驗(yàn)判斷因果關(guān)系6、數(shù)據(jù)分析在市場(chǎng)營(yíng)銷中有著廣泛的應(yīng)用。以下關(guān)于數(shù)據(jù)分析在市場(chǎng)營(yíng)銷中的作用,不正確的是()A.可以幫助企業(yè)了解客戶的行為和偏好,進(jìn)行精準(zhǔn)的市場(chǎng)定位和目標(biāo)客戶篩選B.通過(guò)分析銷售數(shù)據(jù)和市場(chǎng)趨勢(shì),預(yù)測(cè)產(chǎn)品的需求,優(yōu)化庫(kù)存管理和供應(yīng)鏈C.數(shù)據(jù)分析只能用于評(píng)估營(yíng)銷活動(dòng)的效果,無(wú)法在活動(dòng)策劃階段提供有價(jià)值的建議D.基于數(shù)據(jù)分析的結(jié)果,企業(yè)可以制定個(gè)性化的營(yíng)銷策略,提高客戶滿意度和忠誠(chéng)度7、關(guān)于數(shù)據(jù)分析中的多變量分析,假設(shè)要同時(shí)研究多個(gè)自變量對(duì)因變量的影響。以下哪種方法可以幫助我們理解變量之間的復(fù)雜關(guān)系和交互作用?()A.多元線性回歸B.因子分析,提取公共因子C.偏最小二乘回歸D.只研究單個(gè)變量與因變量的關(guān)系8、在數(shù)據(jù)分析中,數(shù)據(jù)分析報(bào)告是傳達(dá)分析結(jié)果的重要方式。以下關(guān)于數(shù)據(jù)分析報(bào)告的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)分析報(bào)告應(yīng)包括問(wèn)題背景、分析方法、結(jié)果呈現(xiàn)和結(jié)論建議等內(nèi)容B.數(shù)據(jù)分析報(bào)告應(yīng)使用簡(jiǎn)潔明了的語(yǔ)言,避免使用專業(yè)術(shù)語(yǔ)和復(fù)雜的公式C.數(shù)據(jù)分析報(bào)告的結(jié)果應(yīng)具有客觀性和可靠性,不能帶有主觀偏見(jiàn)D.數(shù)據(jù)分析報(bào)告的格式和風(fēng)格可以隨意選擇,只要能表達(dá)清楚分析結(jié)果即可9、在數(shù)據(jù)分析中,模型的可解釋性對(duì)于理解模型的決策過(guò)程和結(jié)果非常重要。假設(shè)建立了一個(gè)用于信用評(píng)估的模型,需要向決策者解釋模型是如何做出信用評(píng)分的。以下哪種模型在提供可解釋性方面更具優(yōu)勢(shì)?()A.決策樹模型B.神經(jīng)網(wǎng)絡(luò)模型C.隨機(jī)森林模型D.以上模型可解釋性相同10、在進(jìn)行數(shù)據(jù)分析時(shí),若要研究不同地區(qū)消費(fèi)者對(duì)某一產(chǎn)品的購(gòu)買意愿差異,以下哪種數(shù)據(jù)分析方法最為適用?()A.描述性統(tǒng)計(jì)分析B.相關(guān)性分析C.方差分析D.回歸分析11、在數(shù)據(jù)分析中,數(shù)據(jù)隱私和安全是需要關(guān)注的重要問(wèn)題。假設(shè)要處理包含個(gè)人敏感信息的數(shù)據(jù),以下關(guān)于數(shù)據(jù)隱私和安全的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以采用數(shù)據(jù)加密技術(shù)對(duì)敏感數(shù)據(jù)進(jìn)行加密存儲(chǔ)和傳輸,保護(hù)數(shù)據(jù)的機(jī)密性B.匿名化和脫敏處理可以在一定程度上保護(hù)個(gè)人隱私,但需要注意處理方法的合理性C.只要數(shù)據(jù)在企業(yè)內(nèi)部使用,就不需要考慮數(shù)據(jù)隱私和安全的問(wèn)題D.遵守相關(guān)的法律法規(guī)和行業(yè)規(guī)范,是保障數(shù)據(jù)隱私和安全的基本要求12、數(shù)據(jù)分析中的主成分分析(PCA)常用于數(shù)據(jù)降維。假設(shè)我們有一個(gè)高維的數(shù)據(jù)集,其中包含大量相關(guān)的特征,通過(guò)PCA進(jìn)行降維時(shí),以下哪個(gè)說(shuō)法是正確的?()A.降維后的主成分?jǐn)?shù)量一定少于原始特征數(shù)量B.主成分是原始特征的線性組合C.降維過(guò)程會(huì)丟失部分?jǐn)?shù)據(jù)信息D.以上都是13、在處理時(shí)間序列數(shù)據(jù)時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行季節(jié)性分解,以下哪種方法在Python中常用?()A.statsmodels庫(kù)中的seasonal_decompose函數(shù)B.scikit-learn庫(kù)中的decomposition模塊C.pandas庫(kù)中的resample函數(shù)D.matplotlib庫(kù)中的plot函數(shù)14、數(shù)據(jù)分析中的數(shù)據(jù)挖掘技術(shù)常用于發(fā)現(xiàn)隱藏在數(shù)據(jù)中的模式和關(guān)系。假設(shè)要從一個(gè)大型電商網(wǎng)站的用戶購(gòu)買記錄中挖掘出用戶的購(gòu)買行為模式,以便進(jìn)行精準(zhǔn)營(yíng)銷。以下哪種數(shù)據(jù)挖掘算法在處理這種大規(guī)模交易數(shù)據(jù)時(shí)更有可能發(fā)現(xiàn)有價(jià)值的信息?()A.決策樹算法B.關(guān)聯(lián)規(guī)則挖掘算法C.聚類算法D.神經(jīng)網(wǎng)絡(luò)算法15、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的方法有很多,其中數(shù)據(jù)標(biāo)準(zhǔn)化是一種常用的方法。以下關(guān)于數(shù)據(jù)標(biāo)準(zhǔn)化的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)標(biāo)準(zhǔn)化可以將數(shù)據(jù)轉(zhuǎn)換為具有相同尺度和單位的數(shù)值B.數(shù)據(jù)標(biāo)準(zhǔn)化可以提高數(shù)據(jù)分析的結(jié)果的準(zhǔn)確性和可靠性C.數(shù)據(jù)標(biāo)準(zhǔn)化的方法有多種,如min-max標(biāo)準(zhǔn)化、z-score標(biāo)準(zhǔn)化等D.數(shù)據(jù)標(biāo)準(zhǔn)化只適用于數(shù)值型數(shù)據(jù),對(duì)于分類型數(shù)據(jù)無(wú)法處理16、在數(shù)據(jù)分析中,預(yù)測(cè)模型的穩(wěn)定性和可靠性是重要的考慮因素。假設(shè)要評(píng)估一個(gè)預(yù)測(cè)模型在不同時(shí)間段和不同數(shù)據(jù)集上的表現(xiàn),以下關(guān)于模型穩(wěn)定性和可靠性的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)多次重復(fù)實(shí)驗(yàn)和交叉驗(yàn)證來(lái)評(píng)估模型的穩(wěn)定性B.模型在不同數(shù)據(jù)集上的性能差異較大,說(shuō)明模型的可靠性較低C.只要模型在訓(xùn)練集上表現(xiàn)良好,就可以認(rèn)為模型是穩(wěn)定和可靠的D.對(duì)模型進(jìn)行監(jiān)控和更新,以適應(yīng)數(shù)據(jù)的變化和新的業(yè)務(wù)需求17、當(dāng)分析一個(gè)在線教育平臺(tái)的課程評(píng)價(jià)數(shù)據(jù),以評(píng)估教師的教學(xué)質(zhì)量和課程的效果??紤]到評(píng)價(jià)的主觀性和多樣性,以下哪種方式可能有助于更客觀地綜合評(píng)價(jià)?()A.計(jì)算平均值B.去除極端值后計(jì)算平均值C.采用眾數(shù)D.以上都是18、在處理缺失值時(shí),如果缺失值的比例較高且數(shù)據(jù)呈現(xiàn)一定的規(guī)律性,以下哪種方法可能較為有效?()A.基于模型的插補(bǔ)B.多重插補(bǔ)C.隨機(jī)插補(bǔ)D.以上都不是19、在數(shù)據(jù)分析中,選擇合適的數(shù)據(jù)分析方法至關(guān)重要。關(guān)于描述性統(tǒng)計(jì)分析和推斷性統(tǒng)計(jì)分析,以下敘述不正確的是()A.描述性統(tǒng)計(jì)分析主要用于對(duì)數(shù)據(jù)的集中趨勢(shì)、離散程度和分布形態(tài)進(jìn)行描述和總結(jié)B.推斷性統(tǒng)計(jì)分析則是基于樣本數(shù)據(jù)對(duì)總體特征進(jìn)行估計(jì)和假設(shè)檢驗(yàn)C.描述性統(tǒng)計(jì)分析只能提供數(shù)據(jù)的基本信息,對(duì)于深入了解數(shù)據(jù)的內(nèi)在規(guī)律和關(guān)系作用有限D(zhuǎn).在實(shí)際應(yīng)用中,通常先進(jìn)行描述性統(tǒng)計(jì)分析,然后根據(jù)研究目的和數(shù)據(jù)特點(diǎn)選擇是否進(jìn)行推斷性統(tǒng)計(jì)分析20、數(shù)據(jù)分析中的貝葉斯方法基于概率推理。假設(shè)我們要根據(jù)新的數(shù)據(jù)更新對(duì)某個(gè)事件的概率估計(jì),以下哪個(gè)貝葉斯定理的應(yīng)用場(chǎng)景是常見(jiàn)的?()A.垃圾郵件過(guò)濾B.疾病診斷C.市場(chǎng)預(yù)測(cè)D.以上都是21、在進(jìn)行假設(shè)檢驗(yàn)時(shí),如果p值小于設(shè)定的顯著性水平(如0.05),我們通常會(huì)得出以下哪種結(jié)論?()A.拒絕原假設(shè)B.接受原假設(shè)C.無(wú)法確定是否拒絕原假設(shè)D.需要重新進(jìn)行實(shí)驗(yàn)22、數(shù)據(jù)分析中的特征工程用于創(chuàng)建和選擇對(duì)模型有用的特征。假設(shè)我們要對(duì)一組圖像數(shù)據(jù)進(jìn)行分析。以下關(guān)于特征工程的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)提取圖像的顏色、形狀、紋理等特征來(lái)表示圖像B.特征選擇可以去除冗余和無(wú)關(guān)的特征,提高模型的效率和性能C.特征工程只適用于結(jié)構(gòu)化數(shù)據(jù),對(duì)圖像、音頻等非結(jié)構(gòu)化數(shù)據(jù)不適用D.可以使用特征縮放、編碼等方法對(duì)特征進(jìn)行預(yù)處理23、在進(jìn)行數(shù)據(jù)可視化時(shí),如果數(shù)據(jù)的量級(jí)差異較大,為了更清晰地展示數(shù)據(jù)分布,以下哪種處理方式較為合適?()A.使用相同的坐標(biāo)軸刻度B.對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理C.只展示部分?jǐn)?shù)據(jù)D.采用多個(gè)圖表分別展示24、在數(shù)據(jù)分析的倫理和法律方面,需要遵循一定的原則和規(guī)范。假設(shè)你處理的是包含個(gè)人敏感信息的數(shù)據(jù),以下關(guān)于數(shù)據(jù)處理的做法,哪一項(xiàng)是最符合倫理和法律要求的?()A.在未獲得授權(quán)的情況下,將數(shù)據(jù)用于其他商業(yè)目的B.對(duì)數(shù)據(jù)進(jìn)行匿名化處理,確保無(wú)法追溯到個(gè)人身份C.忽視數(shù)據(jù)的隱私保護(hù),認(rèn)為分析結(jié)果更重要D.隨意分享數(shù)據(jù)給第三方機(jī)構(gòu)25、在數(shù)據(jù)分析中,若要評(píng)估一個(gè)預(yù)測(cè)模型的準(zhǔn)確性,以下哪個(gè)指標(biāo)是常用的?()A.均方誤差B.標(biāo)準(zhǔn)差C.偏度D.峰度26、數(shù)據(jù)分析師在處理數(shù)據(jù)時(shí),需要考慮數(shù)據(jù)的來(lái)源和可靠性。假設(shè)我們從多個(gè)渠道收集了關(guān)于市場(chǎng)趨勢(shì)的數(shù)據(jù)。以下關(guān)于數(shù)據(jù)來(lái)源的描述,哪一項(xiàng)是錯(cuò)誤的?()A.官方統(tǒng)計(jì)數(shù)據(jù)通常具有較高的權(quán)威性和可靠性B.網(wǎng)絡(luò)爬蟲獲取的數(shù)據(jù)可能存在偏差和錯(cuò)誤,需要謹(jǐn)慎使用C.內(nèi)部數(shù)據(jù)庫(kù)中的數(shù)據(jù)一定是準(zhǔn)確和完整的,無(wú)需進(jìn)行驗(yàn)證D.不同來(lái)源的數(shù)據(jù)可能存在格式和定義上的差異,需要進(jìn)行統(tǒng)一和整合27、對(duì)于一個(gè)聚類問(wèn)題,如果事先不知道聚類的類別數(shù),以下哪種方法可以幫助確定合適的類別數(shù)?()A.肘部法則B.輪廓系數(shù)C.Calinski-Harabasz指數(shù)D.以上都是28、在處理大規(guī)模數(shù)據(jù)時(shí),分布式計(jì)算框架能夠提高計(jì)算效率。假設(shè)要對(duì)數(shù)十億條的用戶行為數(shù)據(jù)進(jìn)行分析,需要快速完成復(fù)雜的計(jì)算任務(wù)。以下哪個(gè)分布式計(jì)算框架在處理這種海量數(shù)據(jù)時(shí)更具優(yōu)勢(shì)?()A.HadoopB.SparkC.FlinkD.Storm29、在進(jìn)行數(shù)據(jù)分析時(shí),特征工程對(duì)于模型的性能有著重要影響。假設(shè)你正在處理一個(gè)預(yù)測(cè)房?jī)r(jià)的數(shù)據(jù)集,包含房屋面積、房間數(shù)量、地理位置等特征。以下關(guān)于特征工程的操作,哪一項(xiàng)是最需要謹(jǐn)慎處理的?()A.對(duì)數(shù)值型特征進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,使其具有相同的量綱B.將地理位置轉(zhuǎn)換為經(jīng)緯度數(shù)值,并作為新的特征C.基于現(xiàn)有特征創(chuàng)建新的交互特征,如房屋面積與房間數(shù)量的乘積D.隨意刪除一些看起來(lái)不重要的特征,以簡(jiǎn)化模型30、在數(shù)據(jù)分析中,大數(shù)據(jù)技術(shù)為處理海量數(shù)據(jù)提供了支持。假設(shè)要處理一個(gè)PB級(jí)別的數(shù)據(jù)集,以下關(guān)于大數(shù)據(jù)技術(shù)的描述,哪一項(xiàng)是不正確的?()A.Hadoop生態(tài)系統(tǒng)中的HDFS用于分布式存儲(chǔ)數(shù)據(jù),能夠擴(kuò)展到大規(guī)模的集群B.MapReduce編程模型可以實(shí)現(xiàn)并行處理,提高數(shù)據(jù)處理的效率C.大數(shù)據(jù)技術(shù)只適用于處理結(jié)構(gòu)化數(shù)據(jù),對(duì)于非結(jié)構(gòu)化和半結(jié)構(gòu)化數(shù)據(jù)無(wú)能為力D.實(shí)時(shí)處理大數(shù)據(jù)可以使用SparkStreaming或Flink等框架二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在汽車銷售行業(yè),客戶需求分析和市場(chǎng)趨勢(shì)預(yù)測(cè)離不開數(shù)據(jù)分析。以某汽車品牌經(jīng)銷商為例,論述如何利用數(shù)據(jù)分析來(lái)了解客戶偏好、制定銷售策略、預(yù)測(cè)市場(chǎng)需求,以及如何應(yīng)對(duì)新能源汽車和自動(dòng)駕駛技術(shù)帶來(lái)的市場(chǎng)變化。2、(本題5分)在金融市場(chǎng)的資產(chǎn)配置中,數(shù)據(jù)分析有助于優(yōu)化投資組合。以某投資機(jī)構(gòu)為例,探討如何運(yùn)用數(shù)據(jù)分析來(lái)評(píng)估不同資產(chǎn)的風(fēng)險(xiǎn)收益特征、確定資產(chǎn)配置比例、監(jiān)控投資組合績(jī)效,以及如何根據(jù)市場(chǎng)變化動(dòng)態(tài)調(diào)整資產(chǎn)配置。3、(本題5分)在電商平臺(tái)的供應(yīng)商管理中,數(shù)據(jù)分析可以評(píng)估供應(yīng)商績(jī)效和合作關(guān)系。以某電商平臺(tái)與供應(yīng)商的合作為例,討論如何運(yùn)用數(shù)據(jù)分析來(lái)監(jiān)測(cè)供應(yīng)商的交貨及時(shí)性、產(chǎn)品質(zhì)量、服務(wù)水平,以及如何基于數(shù)據(jù)分析選擇和培育優(yōu)質(zhì)供應(yīng)商。4、(本題5分)能源行業(yè)的數(shù)據(jù)具有多樣性和復(fù)雜性,數(shù)據(jù)分析有助于能源的合理分配和節(jié)能減排。請(qǐng)深入論述如何利用數(shù)據(jù)分析來(lái)預(yù)測(cè)能源需求、優(yōu)化能源供應(yīng)網(wǎng)絡(luò)和監(jiān)測(cè)能源消耗,舉例說(shuō)明數(shù)據(jù)分析在新能源開發(fā)和傳統(tǒng)能源管理中的應(yīng)用,以及面臨的技術(shù)和政策障礙。5、(本題5分)在能源智能電網(wǎng)中,數(shù)據(jù)分析有助于優(yōu)化電力分配和提高電網(wǎng)穩(wěn)定性。以某地區(qū)的智能電網(wǎng)為例,論述如何利用數(shù)據(jù)分析來(lái)預(yù)測(cè)電力需求、監(jiān)控電網(wǎng)設(shè)備狀態(tài)、進(jìn)行故障診斷和預(yù)警,以及如何實(shí)現(xiàn)數(shù)據(jù)驅(qū)動(dòng)的電網(wǎng)優(yōu)化運(yùn)行。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋什么是強(qiáng)化學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用,說(shuō)明其與監(jiān)督學(xué)習(xí)和無(wú)監(jiān)督學(xué)習(xí)的區(qū)別,并舉例分析。2、(本題5分)在處理音頻數(shù)據(jù)時(shí),常用的數(shù)據(jù)分析方法和技術(shù)有哪些?解釋音頻特征提取、語(yǔ)音識(shí)別等概念,并舉例說(shuō)明應(yīng)用。3、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的標(biāo)準(zhǔn)化和歸一化?請(qǐng)說(shuō)明它們的目的、方
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版指標(biāo)房屋銷售協(xié)議條款版
- 二手房交易中介協(xié)議合同范本(2024版)
- 2025年度銷售業(yè)務(wù)員兼職崗位員工激勵(lì)與績(jī)效改進(jìn)合同2篇
- 二零二五年度別墅景觀綠化養(yǎng)護(hù)合同3篇
- 二零二五版國(guó)際會(huì)展中心物業(yè)全面服務(wù)與管理協(xié)議3篇
- 專業(yè)廣告代理服務(wù)協(xié)議(2024版)版A版
- 2024項(xiàng)目合作中間人傭金協(xié)議書
- 二零二五年度雞苗運(yùn)輸時(shí)間優(yōu)化及效率提升合同3篇
- 二零二五版?zhèn)€人汽車銷售代理合同模板3篇
- 二零二五年度二手汽車租賃與環(huán)保節(jié)能服務(wù)合同3篇
- 農(nóng)民工工資表格
- 【寒假預(yù)習(xí)】專題04 閱讀理解 20篇 集訓(xùn)-2025年人教版(PEP)六年級(jí)英語(yǔ)下冊(cè)寒假提前學(xué)(含答案)
- 2024年突發(fā)事件新聞發(fā)布與輿論引導(dǎo)合同
- 地方政府信訪人員穩(wěn)控實(shí)施方案
- 小紅書推廣合同范例
- 商業(yè)咨詢報(bào)告范文模板
- 幼兒園籃球課培訓(xùn)
- AQ 6111-2023個(gè)體防護(hù)裝備安全管理規(guī)范知識(shí)培訓(xùn)
- 老干工作業(yè)務(wù)培訓(xùn)
- 基底節(jié)腦出血護(hù)理查房
- 高中語(yǔ)文《勸學(xué)》課件三套
評(píng)論
0/150
提交評(píng)論