版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
SANS.eduTemplateVersionApril2024
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
Author:AnthonyRusso,atrusso7@Advisor:TanyaBaccam
Accepted:June9,2024
Abstract
ThisresearchexploresthepotentialofLargeLanguageModels(LLMs),explicitlyusingChatGPTActionsasdynamicSOARtoolstoaddressevolvingcybersecuritythreats.
TraditionalSOARsystems,thougheffective,demandsignificanttimeandresourcesfordevelopmentandmaintenance.Thestudyevaluatestheirabilitytoautonomouslydetect,analyze,andrespondtothreatsbyintegratingLLMsintoacontrolledenvironmentandsimulatingvariouscybersecurityincidents.FindingsrevealthatLLM-drivenSOAR
toolsreducedevelopmenttime,enhanceresponseeffectiveness,andimprove
communicationclarity.However,challengessuchascontinuousmodelupdatesandstafftrainingwerenoted.ThisresearchprovidesaframeworkforimplementingLLM-drivenSOARtools,highlightingtheirtransformativepotentialincybersecurityoperationsandsuggestingareasforfurtherstudy.
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
2
1.Introduction
1.1.TheGrowingNeedforEnhancedCybersecurity
Automation
Intoday’sdigitalage,thepaceatwhichcybersecuritythreatsevolvedemands
equallydynamicdefensemechanisms.SecurityOrchestration,Automation,and
Response(SOAR)systemsarecrucialinmanagingthesethreatsbyautomatingcomplexworkflowsandresponses.Despitetheirefficacy,thetraditionalSOARtoolsareoften
resource-intensive,requiringsignificanttimeandexpertisetodevelopandmaintain
effectiveplaybooks.Thisposesaparticularchallengefororganizationsthatmayneedmoreresources.
1.2.IntegratingLargeLanguageModelsintoSOAR
Thispaperexploresaninnovativeapproachtoaddressingthesechallengesby
integratingLargeLanguageModels(LLMs),suchasOpenAI’sGPTtechnology,into
traditionalSOARworkflows.LLMshaveshownpromiseinvariousapplicationsthat
requirenaturallanguageunderstandinganddecision-makingcapabilities.Byleveragingthesemodels,SOARsystemscanautomateroutineresponsesandgeneratereal-time
adaptive,intelligentsecuritymeasures.
1.3.ResearchContextandObjectives
Thisstudyispositionedattheintersectionofartificialintelligenceand
cybersecurity,acutting-edgeareaofresearchthatseekstoleveragethelatest
advancementsinAItobolstercyberdefenses.Thestudyaimstoassesstheefficacyof
LLMsinreducingthelaborandtimetraditionallyrequiredtodevelopandupdateSOARplaybooks.Additionally,itevaluatestheimpactofthesemodelsontheeffectivenessofautomatedresponses,withtheultimategoalofprovidingadetailedanalysisthatcould
guidecybersecurityprofessionalsandorganizationsinenhancingtheirsecurityoperationsthroughinnovativeAIintegrations.
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
3
2.ResearchMethod
TheresearchmethodologyencompassestheintegrationofLLMsintoa
controlledenvironment,thesimulationofvariouscybersecurityincidents,thesystematicmonitoringofLLMresponses,andanin-depthanalysisoftheirperformancecomparedtotraditionalSOARsystems.Theobjectiveistoprovideathoroughandreplicable
frameworkforassessingthefeasibilityandeffectivenessofLLM’sinenhancingcybersecurityoperations.
2.1.ResearchSetup
2.1.1.CustomGPTSetup
Thefirstphaseoftheresearchinvolveddevelopingandconfiguringa
CustomGPTthroughtheChatGPTplatform.ThisstepwascriticaltoensurethattheLargeLanguageModel(LLM)wastailoredtomeetthespecificrequirementsofa
dynamicSOARtool.TheCustomGPTsetupencompassedseveraldetailedprocesses:
1.PromptEngineering:Afine-tunedpromptmustbedevelopedfortheLLMto
operateefficiently.ThisinvolvediterativetestingandtuningtheprompttoensurethattheGPTproducedpreciseandaccurateresultsinresponsetocybersecurity
scenarios.Thepromptsweredesignedtobecomprehensiveanddetailed,guidingtheLLMtoperformspecifictaskssuchasthreatdetection,analysis,andresponse
actions.Figure1showsthepromptusedforthisexperiment:
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
4
Figure1:ExperimentMethodologyPrompt
2.DocumentationandTrainingData:ExtensivedocumentationandtrainingdatawereincorporatedtoenhancetheLLM’sperformance.Thisincludedexamplesofcybersecurityincidents,responseprotocols,anddetailedexplanationsofvariousthreattypes.ThedocumentationservedasareferencefortheLLM,enablingittounderstandandprocesscomplexsecuritytasksmoreeffectively.
3.ConfigurationofActions(APIIntegrations):OneofthemostcrucialaspectsofsettinguptheCustomGPTwasconfiguringActions,whichinvolvedintegratingtheLLMwithexternalAPIs.TheseintegrationsextendedthecapabilitiesoftheLLM,allowingittointeractwithvariouscybersecuritytoolsandsystemsliketraditional
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
5
SOARplatforms.TheAPIintegrationsenabledtheLLMtopulldatafromthreatintelligencefeeds,executeautomatedresponses,andupdatesecuritydashboards.Figure2isasampleoftheconfigurationfortheVirusTotalintegration:
Figure2:VirusTotalIntegrationConfiguration
4.ValidationandTesting:AvalidationphasewasconductedaftertheinitialsetuptoensuretheCustomGPTwasfunctioningasintended.ThisinvolvedrunningaseriesoftestscenariostoevaluatetheaccuracyandreliabilityoftheLLM’sresponses.
Feedbackfromthesetestsfurtherrefinedthepromptsandconfigurations,ensuringthattheLLMcouldhandlereal-worldcybersecurityincidentseffectively.
5.ContinuousImprovement:Thesetupprocessalsoincludedmechanismsfor
constantimprovement.Regularupdateswereplannedtoincorporatenewthreatdata,refineresponsestrategies,andenhancetheLLM’soverallcapabilities.Thisiterative
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
6
approachensuredthattheCustomGPTremainedpracticalandup-to-datewithcybersecuritytrendsandthreats.
BymeticulouslydevelopingandconfiguringtheCustomGPT,theresearchaimedtocreatearobustanddynamicSOARtoolcapableofautonomouslymanagingawide
rangeofcybersecuritytasks.Thisphaselaidthefoundationforsubsequenttestingandevaluation,providingacomprehensivesetupthatintegratedadvancedLLMcapabilitieswithpracticalcybersecurityapplications.
2.1.2.TraditionalSOARSetupwithTines
Toprovideabenchmarkforcomparison,atraditionalSOARsystemwassetupusingTines,aplatformknownforitsuser-friendlyandflexibleautomationcapabilities.Tinesoffersafree-tieroption,makingitanaccessiblechoicefordevelopingandtestingSOARautomation.ThefollowingstepsoutlinethesetupprocessforTines:
1.EnvironmentSetup:ATinesaccountwascreated,andadedicatedworkspacewasconfiguredtoreplicatetheSOARfunctionalitiesintendedforcomparisonwiththeCustomGPT.Thisincludedsettingupdatafeeds,securitytools,andintegrations
necessaryforincidentresponseandthreatmanagement.
2.AutomationConfiguration:SimilartotheCustomGPT,variousautomatonswere
createdwithinTinestohandletaskssuchasthreatdetection,analysis,andresponse.TheseautomatonsweredesignedtomirrorthecapabilitiesoftheLLM-drivenSOARtools,providingadirectcomparisonofperformanceandefficiency.
3.ValidationandTesting:TheTinessetupunderwentavalidationphasewheretheconfiguredautomationwastestedagainstthesamescenariosusedforthe
CustomGPT.Thisensuredthatbothsystemswereevaluatedundercomparableconditions,allowingforanaccurateassessmentoftheirrespectivestrengthsandweaknesses.
4.DataCollectionandAnalysis:DatafromtheTinesSOARsystemwascollectedandanalyzedinparallelwiththedatafromtheCustomGPT.Keyperformance
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
7
indicatorssuchasresponsetime,accuracy,andreliabilityweremeasuredto
determinetheeffectivenessofeachsysteminhandlingcybersecurityincidents.
BysettingupboththeCustomGPTandatraditionalSOARsystemwithTines,
theresearchaimedtoprovideacomprehensiveandcomparativeanalysisofthetwo
approaches.ThisdualsetupallowedforarobustevaluationofLLM-drivenSOARtools’potentialbenefitsandlimitationsinreal-worldcybersecurityoperations.
2.2.SimulationofCybersecurityIncidents
ArangeofsimulatedcybersecuritythreatswereintroducedintothecontrolledenvironmenttocomprehensivelyevaluatetheLLM’sperformance.ThesesimulationswerecarefullydesignedtocoverabroadspectrumofeverydaySOARtasksand
includedthefollowingscenarios:
1.PhishingAttacks:SimulationsinvolvingphishingemailsrequiredtheLLMto
validateemailheaders,extractandanalyzelinks,checkformaliciousattachments,andgenerateaconcisereportdetailingthefindings.
2.MalwareAttacks:ScenariosinvolvingransomwareinfectionstaskedtheLLMwithdetectingthethreat,isolatingaffectedsystems,initiatingremediationactions,and
communicatingtheincidentdetailstorelevantstakeholders.
3.NetworkIntrusions:Intrusionscenariosinvolvedunauthorizedaccessattempts,wheretheLLMneededtoidentifyunusualnetworkactivity,analyzesecuritylogs,andimplementcontainmentmeasurestomitigatethethreat.
ThesediversescenarioswereselectedtochallengetheLLM’scapabilitiesacrossdifferentcybersecurityincidents,comprehensivelyassessingitseffectivenessand
adaptability.
2.3.LLMExecutionandMonitoring
Duringthesimulationphase,theLLMwasallowedtoautonomouslydetect,analyze,andrespondtotheintroducedthreats.Theexecutionofthesetaskswas
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
8
meticulouslymonitoredtoensureathoroughevaluationoftheLLM’scapabilities.Keyfocusareasincluded:
1.Decision-MakingProcess:TheLLM’sdecision-makingprocesswastrackedtounderstandhowitprioritizedthreats,selectedresponseactions,andadapteditsstrategiesbasedonreal-timeanalysis.
2.ResponseTimes:ThetimetheLLMtooktodetectandrespondtoeachthreatwasrecordedtoevaluateitsefficiencyinhandlingincidents.
3.OutcomeEffectiveness:TheeffectivenessoftheLLM’sactionswasanalyzedtodeterminehowwellitmitigatedthreatsandwhetheritsresponsesalignedwithbestcybersecuritypractices.
ThisdetailedmonitoringprovidedcriticalinsightsintotheLLM’soperationalperformanceandpotentialtofunctionasadynamicSOARtool.
2.4.DataCollection,EvaluationCriteria,andAnalysis
ComprehensivedatacollectionwasessentialtothoroughlyevaluatetheLLM’sperformanceacrossdifferentthreatscenarios.Criticalmetricsfordatacollection
included:
1.ThreatDetectionandAnalysis:AssessingtheeffectivenessoftheLLMinidentifyingandanalyzingcybersecuritythreats,includingmetricssuchasdetectionaccuracy,falsefavorablerates,andfalsenegativerates.
2.ResponseActions:EvaluatingtheLLM’sabilitytodetermineandexecuteappropriateresponsemeasures,focusingonthesuccessrateofautomatedactionsandtheir
alignmentwithpredefinedsecurityprotocols.
3.AccuracyandReliability:ComparingtheprecisionoftheLLM’sactionstoexpectedSOARoutcomes,assessingconsistency,reliability,andanydeviationsfromstandardpractices.
4.AutomationEfficiency:MeasuringthedegreeofautomationachievedandtheoveralltimesavedcomparedtotraditionalSOARprocesses,highlightingpotentialproductivitygainsfromusingLLM-drivenSOARtools.
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
9
Datawassystematicallycollectedandanalyzedtoensurearobustand
comprehensiveassessmentoftheLLM’scapabilities.Thecollecteddatawas
meticulouslyanalyzedfollowingthetestingphasetoevaluatetheLLM’seffectivenessinexecutingSOARfunctions.TheanalysisinvolvedcomparingtheLLM’sperformancemetricswithtraditionalSOARsystemstohighlightdifferencesinefficiency,accuracy,andadaptabilitys.Instancesofmisidentification,incorrectanalysis,orinappropriate
responseswereidentifiedandanalyzed,providinginsightsintoareasneeding
improvement.Thedegreeofautomationachieved,andthetimesavedwereevaluated,
quantifyingthebenefitsofusingLLM-drivenSOARtoolsandtheirpotentialtoenhanceoperationalefficiency.
Thefindingswerecompiledintoadetailedreportsummarizingthefeasibility
andeffectivenessofusingLLMsasdynamicSOARtools.Thisreportaimstoprovideacomprehensiveoverviewofthestudy’sresults,offeringvaluableinsightsfor
cybersecurityprofessionalsandresearchers.
2.5TestDurationandEnvironment
Theexperimentwasconductedover50differentsecurity-relatedeventstoensurecomprehensivedatacollectionandmanageableanalysis.ThisdurationwassufficienttoobservetheLLM’sperformanceacrossvarioussimulatedincidentsandgather
meaningfulinsights.Thecontrolledenvironmentreplicatedreal-worldconditionsascloselyaspossible,ensuringtheLLMhadaccesstoallnecessarydataandnetworkcontrols.
Byfollowingthissystematicandrobustapproach,theresearchensuredthatthestudy’sfindingsarereliable,applicable,andbeneficialtoreal-worldcybersecurity
operations.Thismethodologyprovidesareplicableframeworkforassessingthe
potentialofLLMsusingChatGPTActionstofunctionasdynamicSOARtools,pavingthewayformoreadaptive,efficient,andeffectiveincidentresponsestrategies.
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
10
3.FindingsandDiscussion
ThefindingsfromthisexperimentrevealsignificantadvantagesofLLM-drivenSOARtoolsovertraditionalSOARsystems,particularlyintermsofimprovisation,
communication,andoveralleffectiveness.
3.1.FindingsExample
3.1.1.LLM’sApproach
Forthefirstexample,wesimplysubmittedasamplephishingemailtotheCustomGPT,anditbegantechnicalanalysisimmediatelyasshowninFigure3:
Figure3:CustomGPTInitialPhishingAnalysis
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
11
TheLLMpromptlysummarizestheeventclearlyandunderstandably.Itbegins
byextractingrelevantdatapointsfromthe.emlfile,ensuringthatitgathersallnecessaryinformationforathoroughevaluation.ItevenusestheVirusTotalintegrationtoenrich
therelevantindicatorsfoundwithinthefile.Figure4show:
Figure4:CustomGPTPhishingSummary
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
12
TheLLMcancontextualizetheattackandprovidepotentialmotives,pastcorrelation,andremediationactions.ItformatsafunctionalTLDRcodeblockthatcouldbeeasilysharedoraddedtoananalyst’scasemanagementplatform.
Forthesecondexample,amaliciouscodeblockisused.HereisthesamplepayloadsubmittedtotheLLM:
whilegetopts":u:c:"arg;do
case$argin
u)URL=$OPTARG;letparameter_counter+=1;;
c)CMD=$OPTARG;letparameter_counter+=1;;
esacdone
if[-z"$URL"]||[-z"$CMD"];then
banner
echo-e"\n[i]Usage:${0}-u<URL>-c<CMD>\n"
exit
else
banner
echo-e"\n[+]Commandoutput:"
fi
curl-s-d"sid=foo&hhook=exec&text=${CMD}"-b"sid=foo"
${URL}|egrep'\ \[[0-9]+\]=\>'|sed-E's/\
\[[0-9]+\]=\>(.*)<br\/>/\1/'
Figure5showstheinitialmalwareanalysis:
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
13
Figure5:CustomGPTInitialMalwareAnalysis
Fromhere,Figure6showstheLLMdivesdeeperusingacybersecuritylenstohighlightsomepotentialattackvectorsthecodemight:
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
14
Figure6:CustomGPTIn-depthMalwareAnalysisandSummary
Inadditiontotheattackvectors,remediationrecommendationsandaneasilyunderstoodTLDRblockarepresented.
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
15
Forthethirdexample,theCustomGPTwassuppliedwithareasonablysimple
networkscanninglogforthenetworkexample.Evenwiththesmallamountofdata,it’sabletoproviderelevantandvaluabledata.Figure7showsthenetworkpayloadand
initialanalysis:
Figure7:CustomGPTNetworkPayloadandInitialAnalysis
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
16
Figure8showshowtheLLMprovidesactionableremediationstrategiesalongwiththefunctionalTLDRsummaryblock:
Figure8:CustomGPTNetworkSummary
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
17
3.1.2.TraditionalSOARApproach
TouseatraditionalSOARsystemtoanalyzeaphishingemail,ananalystmustfirstbuildaself-defined“story”orplaybook.Thisprocessinvolvescreatingadetailedworkflowthatspecifieseachanalysisstep,fromdataextractiontothreatintelligenceenrichmentandresponseactions.
Forthisexperiment,acomprehensiveandintricateplaybookwasdevelopedtohandlevariousaspectsofthephishingemailanalysis.Theplaybookincludedstepsforextractingdatafromtheemail,queryingexternalthreatintelligencesourceslike
VirusTotal,analyzingHTMLelements,andevaluatingthefindingsagainststandard
phishingtechniques.Thestructureofthisplaybookwasextensiveandrequired
significanttimeandexpertisetodesignandimplement,highlightingthecomplexityandresource-intensivenatureoftraditionalSOARsystems.Figure9providesahigh-levelscreenshotoftheplaybook:
Figure9:TraditionalSOARPhishingPlaybook
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
18
Theapproachesfornetworkandmalwareattackanalysesaresimilar,requiringthecreationofequallydetailedandtediousplaybooks.Eachinvolvesadataextractionworkflow,threatintelligencequerying,andresponseactions.Theoutputsofthese
playbooksareseverelylimitedbytheintegrationsavailable,andevenwithintegrations,theyneedadvancedcapabilitiessuchascodeinterpretation,summarization,and
enhancedcommunication.
Forthesereasons,onlythephishingemailexampleisshown.Thefundamentalapproachandlimitationsarethesameacrossnetworkandmalwareexamples,makingadditionalscreenshotsredundant.Here’sanexampleofthephishingplaybookoutput:
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
19
TheprovidedimageshowsaphishingemailanalysisoutputusingtheTines
platform.Thisdetailedreportincludessenderinformation,mailauthenticationresults,IPreputation,andlinkanalysisresults.However,itlacksadditionalcommunicationtohelpinterprettheresults,makingiteasierforuserstounderstandtheimplications
withoutfurtherinvestigation.Moreover,theenrichmentdetailsoftenrequireopeningexternallinksandreadingthroughadditionaldatatogainacompletepicture,
highlightingthelimitationoftraditionalSOARsystemsinprovidingimmediateactionableinsights.
3.2.DiscussionofFindings
OneofthemostremarkablefindingsfromthestudyistheLLM’sabilityto
improviseandadapttovariouscybersecurityscenarios.UnliketraditionalSOAR
systems,whichrelyheavilyonpredefinedplaybooks,LLMscangeneratecontextuallyappropriateresponsesinreal-time,evenwhenfacedwithunfamiliarorevolvingthreats.Keyobservationsinclude:
1.DynamicThreatDetection:TheLLMdemonstratedsuperiorperformancein
identifyingnewandcomplexthreatsnotexplicitlydefinedinitstrainingdata.Forexample,whenpresentedwithnovelphishingtactics,theLLMwasabletoanalyzeemailpatterns,identifysuspiciouselements,andflagpotentialthreatseffectively.
2.AdaptiveResponseStrategies:TheLLM’sabilitytoadaptitsresponsestrategiesbasedonreal-timeanalysiswasevidentinscenariosinvolvingrapidlychanging
threatlandscapes.Inasimulatedransomwareattack,theLLMdetectedtheinitial
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
20
breachandadjusteditsresponseastheattackevolved,implementingcontainmentmeasuresandinitiatingsystemrecoveryprotocols.
ThesefindingsunderscoretheLLM’spotentialtoenhancecybersecurityoperationsbyprovidingaflexibleandresponsivedefensemechanismcapableofhandlingawiderangeofincidentswithminimalpredefinedinstructions.
3.2.1.CommunicationandClarity
AnothersignificantadvantageofLLM-drivenSOARtoolsistheirabilityto
generateclearandconcisecommunications,facilitatingbetterunderstandingand
decision-makingacrosstheorganization.TraditionalSOARsystemsoftenproducerawdatapointsthatrequirefurtherinterpretation,whereasLLMscanprovidecomprehensivereportsandactionableinsights.Keyhighlightsinclude:
1.DetailedIncidentReports:TheLLMconsistentlyproduceddetailedandeasy-to-
understandincidentreports.Thesereportsincludedsummariesofdetectedthreats,
analysisofthepotentialimpact,andrecommendedresponseactions.Thislevelof
clarityensuredthatbothtechnicalandnon-technicalstakeholderscouldcomprehendthesituationandmakeinformeddecisionsquickly.
2.EnhancedStakeholderCommunication:TheLLM-generatedreportswere
invaluableinscenariosrequiringcommunicationwithexternalstakeholders,suchasregulatorybodiesoraffectedcustomers.Theyprovidedastraightforwardnarrativeoftheincident,actions,andexpectedoutcomes,enhancingtransparencyandtrust.
Communicatingcomplexcybersecurityincidentsstraightforwardlyimprovesoperationalefficiencyandstrengthenstheorganization’soverallsecurityposture.
3.2.2.ComparativePerformance:LLM-DrivenSOARvs.TraditionalSOAR
Thestudy’sfindingsindicatethatLLM-drivenSOARtoolsoutperform
traditionalSOARsystemsinseveralcriticalareas.Thecomparisonwasbasedonkeyperformancemetrics,includingresponsetime,accuracy,andoveralleffectiveness.
1.ResponseTime:TheLLM-drivenSOARtooldemonstratedsignificantlyfasterresponsetimesthantraditionalsystems.Insimulatedincidents,theLLMcould
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
21
detectandrespondtothreatswithinseconds,whereastraditionalSOARsystems,
constrainedbystaticplaybooksandmanualinterventions,tookconsiderablylonger.
AttackType
LLM-DrivenSOAR
TraditionalSOAR
Malware
30seconds
1minute45seconds
Network
36seconds
2minutes10seconds
Phishing
35seconds
2minutes5seconds
2.AccuracyandReliability:TheaccuracyoftheLLMinidentifyingandmitigatingthreatswasnotablyhigher.TraditionalSOARsystemsexhibitedhigherfalse
positiveandfalsenegativerates,whereastheLLMmaintainedalowererrormargin,ensuringmorereliablethreatmanagement.
Metric
AttackType
LLM-DrivenSOAR
TraditionalSOAR
DetectionAccuracy
Malware
98%
85%
Network
97%
83%
Phishing
99%
87%
FalsePositiveRate
Malware
1.5%
10%
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
22
Network
2%
11%
Phishing
1%
9%
FalseNegativeRate
Malware
0.5%
5%
Network
0.8%
6%
Phishing
0.2%
4%
3.OverallEffectiveness:ThecomprehensivecapabilitiesoftheLLM,includingits
abilitytoadapt,communicate,andexecutecomplexresponsestrategies
autonomously,providedasignificantedgeovertraditionalsystems.Theonly
scenarioswheretraditionalSOARsystemscouldcompeteinvolvedaugmentationbyeitheranLLMorhumanintervention.
LLM-DrivenSOAR
TraditionalSOAR
Dynamicallyadjustsstrategiesinreal-time
Requiresmanualupdatestoplaybooks
Providesdetailed,clearincidentreports
Generatesrawdatapointsneedinginterpretation
AnthonyRusso,atrusso7@
RevolutionizingCybersecurity:ImplementingLargeLanguageModelsasDynamicSOARTools
23
Executescomplexstrategiesautonomously
Requiressignificanthumanoversight
ThesefindingshighlightthetransformativepotentialofLLM-drivenSOARtoolsincybersecurityoperations.Organizationscanachievehighersecurity,efficiency,and
resiliencebyleveragingadvancedAIcapabilities.
4.RecommendationsandImplications
Theseinsightsgainedfromthisexperimentarecrucialforcybersecurity
professionalsconsideringtheimplementationofLLM-drivenSOARtoolsandfor
researchersaimingtoadvancethisfield.GiventhesignificantpotentialdemonstratedbyLLMinautomatingandenhancingSOARfunctions,itisessentialtotranslatethese
findingsintopracticalstepsandidentifyareasthatrequirefurtherinvestigation.
4.1.RecommendationsforPractice
OrganizationsshouldconsiderseveralcriticalstepstosuccessfullyintegrateLargeLanguageModels(LLMs)usingChatGPTActionsasdynamicSOARtools.
Continuousmodeltrainingisessential;regularLLMupdateswiththelatest
cybersecuritydataandthreatscenariosarenecessarytomaintaintheireffectiveness.ThisinvolvesestablishingafeedbackloopwheretheLLMslearnfrompastincidentsandincorporatereal-worlddatafromcybersecurityeventstoenhancethemodels’
understandingandresponsiveness.
Enhancingerrordetectionmechanismsisalsocrucial.Developingand
implementingadvancederror-detectionalgorithmstoidentifyandcorrectinaccuraciesinLLMresponsescanincludecross-referencingoutputswithtrusteddatabasesor
employingsecondarymodelsforverific
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024展覽會(huì)場保安服務(wù)與展覽會(huì)期間衛(wèi)生防疫合同3篇
- 2024年度商標(biāo)專用權(quán)轉(zhuǎn)讓及許可使用合同協(xié)議3篇
- 2024年度職業(yè)院校校服定制及學(xué)生制服配套服務(wù)合同3篇
- 部隊(duì)訓(xùn)練安全教案
- 防火安全巡查和檢測的重要性
- 2023年新七年級(jí)歷史開學(xué)分班自學(xué)反饋拔高題檢測卷(解析版)
- 2023-2024學(xué)年初中九年級(jí)上學(xué)期期末道法試題及答案
- 2024年茶藝師(四級(jí))理論知識(shí)考試題庫(附答案)
- 簽訂保險(xiǎn)協(xié)議合同范例
- 商鋪乙方解約合同范例
- 燃?xì)獍惭b人員管理制度
- 省份簡稱課件
- 公民科學(xué)素質(zhì)調(diào)查問卷
- 《城市規(guī)劃原理試題》(附答案)
- 小學(xué)健康教育試題-及答案
- 110kV升壓站構(gòu)支架組立施工方案
- 鋼構(gòu)件應(yīng)力超聲檢測技術(shù)規(guī)程
- 何以中國:公元前的中原圖景
- 小學(xué)英語-Unit3What would you likePartB Let's talk教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思
- 自然環(huán)境對(duì)聚落的影響
- 河南省洛陽市偃師區(qū)2023-2024學(xué)年四年級(jí)數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含答案
評(píng)論
0/150
提交評(píng)論