江西科技職業(yè)學(xué)院《機(jī)器智能與信息對(duì)抗》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
江西科技職業(yè)學(xué)院《機(jī)器智能與信息對(duì)抗》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
江西科技職業(yè)學(xué)院《機(jī)器智能與信息對(duì)抗》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
江西科技職業(yè)學(xué)院《機(jī)器智能與信息對(duì)抗》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
江西科技職業(yè)學(xué)院《機(jī)器智能與信息對(duì)抗》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)江西科技職業(yè)學(xué)院《機(jī)器智能與信息對(duì)抗》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在使用深度學(xué)習(xí)進(jìn)行圖像分類時(shí),數(shù)據(jù)增強(qiáng)是一種常用的技術(shù)。假設(shè)我們有一個(gè)有限的圖像數(shù)據(jù)集。以下關(guān)于數(shù)據(jù)增強(qiáng)的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)隨機(jī)旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪圖像來(lái)增加數(shù)據(jù)的多樣性B.對(duì)圖像進(jìn)行色彩變換、添加噪聲等操作也屬于數(shù)據(jù)增強(qiáng)的方法C.數(shù)據(jù)增強(qiáng)可以有效地防止模型過(guò)擬合,但會(huì)增加數(shù)據(jù)標(biāo)注的工作量D.過(guò)度的數(shù)據(jù)增強(qiáng)可能會(huì)導(dǎo)致模型學(xué)習(xí)到與圖像內(nèi)容無(wú)關(guān)的特征,影響模型性能2、在一個(gè)股票價(jià)格預(yù)測(cè)的場(chǎng)景中,需要根據(jù)歷史的股票價(jià)格、成交量、公司財(cái)務(wù)指標(biāo)等數(shù)據(jù)來(lái)預(yù)測(cè)未來(lái)的價(jià)格走勢(shì)。數(shù)據(jù)具有非線性、非平穩(wěn)和高噪聲的特點(diǎn)。以下哪種方法可能是最合適的?()A.傳統(tǒng)的線性回歸方法,簡(jiǎn)單直觀,但無(wú)法處理非線性關(guān)系B.支持向量回歸(SVR),對(duì)非線性數(shù)據(jù)有一定處理能力,但對(duì)高噪聲數(shù)據(jù)可能效果不佳C.隨機(jī)森林回歸,能夠處理非線性和高噪聲數(shù)據(jù),但解釋性較差D.基于深度學(xué)習(xí)的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM),對(duì)時(shí)間序列數(shù)據(jù)有較好的建模能力,但容易過(guò)擬合3、假設(shè)要預(yù)測(cè)一個(gè)時(shí)間序列數(shù)據(jù)中的突然變化點(diǎn),以下哪種方法可能是最合適的?()A.滑動(dòng)窗口分析,通過(guò)比較相鄰窗口的數(shù)據(jù)差異來(lái)檢測(cè)變化,但窗口大小選擇困難B.基于統(tǒng)計(jì)的假設(shè)檢驗(yàn),如t檢驗(yàn)或方差分析,但對(duì)數(shù)據(jù)分布有要求C.變點(diǎn)檢測(cè)算法,如CUSUM或Pettitt檢驗(yàn),專門用于檢測(cè)變化點(diǎn),但可能對(duì)噪聲敏感D.深度學(xué)習(xí)中的異常檢測(cè)模型,能夠自動(dòng)學(xué)習(xí)變化模式,但需要大量數(shù)據(jù)訓(xùn)練4、假設(shè)正在構(gòu)建一個(gè)推薦系統(tǒng),需要根據(jù)用戶的歷史行為和偏好為其推薦相關(guān)的產(chǎn)品或內(nèi)容。如果數(shù)據(jù)具有稀疏性和冷啟動(dòng)問(wèn)題,以下哪種方法可以幫助改善推薦效果?()A.基于內(nèi)容的推薦B.協(xié)同過(guò)濾推薦C.混合推薦D.以上方法都可以嘗試5、在強(qiáng)化學(xué)習(xí)中,智能體通過(guò)與環(huán)境進(jìn)行交互來(lái)學(xué)習(xí)最優(yōu)策略。假設(shè)一個(gè)機(jī)器人需要在復(fù)雜的環(huán)境中找到通往目標(biāo)的最佳路徑,并且在途中會(huì)遇到各種障礙和獎(jiǎng)勵(lì)。在這種情況下,以下哪種強(qiáng)化學(xué)習(xí)算法可能更適合解決這個(gè)問(wèn)題?()A.Q-learning算法,通過(guò)估計(jì)狀態(tài)-動(dòng)作值函數(shù)來(lái)選擇動(dòng)作B.SARSA算法,基于當(dāng)前策略進(jìn)行策略評(píng)估和改進(jìn)C.策略梯度算法,直接優(yōu)化策略的參數(shù)D.以上算法都不適合,需要使用專門的路徑規(guī)劃算法6、假設(shè)正在開發(fā)一個(gè)用于圖像分割的機(jī)器學(xué)習(xí)模型。以下哪種損失函數(shù)通常用于評(píng)估圖像分割的效果?()A.交叉熵?fù)p失B.均方誤差損失C.Dice損失D.以上損失函數(shù)都可能使用7、某研究需要對(duì)音頻信號(hào)進(jìn)行分類,例如區(qū)分不同的音樂(lè)風(fēng)格。以下哪種特征在音頻分類中經(jīng)常被使用?()A.頻譜特征B.時(shí)域特征C.時(shí)頻特征D.以上特征都常用8、在一個(gè)圖像分類任務(wù)中,如果需要快速進(jìn)行模型的訓(xùn)練和預(yù)測(cè),以下哪種輕量級(jí)模型架構(gòu)可能比較適合?()A.MobileNetB.ResNetC.InceptionD.VGG9、在一個(gè)圖像生成任務(wù)中,例如生成逼真的人臉圖像,生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種常用的方法。GAN由生成器和判別器組成,它們?cè)谟?xùn)練過(guò)程中相互對(duì)抗。以下關(guān)于GAN訓(xùn)練過(guò)程的描述,哪一項(xiàng)是不正確的?()A.生成器的目標(biāo)是生成盡可能逼真的圖像,以欺騙判別器B.判別器的目標(biāo)是準(zhǔn)確區(qū)分真實(shí)圖像和生成器生成的圖像C.訓(xùn)練初期,生成器和判別器的性能都比較差,生成的圖像質(zhì)量較低D.隨著訓(xùn)練的進(jìn)行,判別器的性能逐漸下降,而生成器的性能不斷提升10、假設(shè)正在進(jìn)行一項(xiàng)關(guān)于客戶購(gòu)買行為預(yù)測(cè)的研究。我們擁有大量的客戶數(shù)據(jù),包括個(gè)人信息、購(gòu)買歷史和瀏覽記錄等。為了從這些數(shù)據(jù)中提取有價(jià)值的特征,以下哪種方法通常被廣泛應(yīng)用?()A.主成分分析(PCA)B.線性判別分析(LDA)C.因子分析D.獨(dú)立成分分析(ICA)11、在進(jìn)行特征工程時(shí),如果特征之間存在共線性,即一個(gè)特征可以由其他特征線性表示,以下哪種方法可以處理共線性?()A.去除相關(guān)特征B.對(duì)特征進(jìn)行主成分分析C.對(duì)特征進(jìn)行標(biāo)準(zhǔn)化D.以上都可以12、在一個(gè)分類問(wèn)題中,如果數(shù)據(jù)集中存在噪聲和錯(cuò)誤標(biāo)簽,以下哪種模型可能對(duì)這類噪聲具有一定的魯棒性?()A.集成學(xué)習(xí)模型B.深度學(xué)習(xí)模型C.支持向量機(jī)D.決策樹13、在機(jī)器學(xué)習(xí)中,模型的選擇和超參數(shù)的調(diào)整是非常重要的環(huán)節(jié)。通??梢允褂媒徊骝?yàn)證技術(shù)來(lái)評(píng)估不同模型和超參數(shù)組合的性能。假設(shè)有一個(gè)分類模型,我們想要確定最優(yōu)的正則化參數(shù)C。如果采用K折交叉驗(yàn)證,以下關(guān)于K的選擇,哪一項(xiàng)是不太合理的?()A.K=5,平衡計(jì)算成本和評(píng)估準(zhǔn)確性B.K=2,快速得到初步的評(píng)估結(jié)果C.K=10,提供更可靠的評(píng)估D.K=n(n為樣本數(shù)量),確保每個(gè)樣本都用于驗(yàn)證一次14、在一個(gè)異常檢測(cè)任務(wù)中,如果異常樣本的特征與正常樣本有很大的不同,以下哪種方法可能效果較好?()A.基于距離的方法,如K近鄰B.基于密度的方法,如DBSCANC.基于聚類的方法,如K-MeansD.以上都不行15、在一個(gè)信用評(píng)估模型中,我們需要根據(jù)用戶的個(gè)人信息、財(cái)務(wù)狀況等數(shù)據(jù)來(lái)判斷其信用風(fēng)險(xiǎn)。數(shù)據(jù)集存在類別不平衡的問(wèn)題,即信用良好的用戶數(shù)量遠(yuǎn)遠(yuǎn)多于信用不良的用戶。為了解決這個(gè)問(wèn)題,以下哪種方法是不合適的?()A.對(duì)少數(shù)類樣本進(jìn)行過(guò)采樣,增加其數(shù)量B.對(duì)多數(shù)類樣本進(jìn)行欠采樣,減少其數(shù)量C.為不同類別的樣本設(shè)置不同的權(quán)重,在損失函數(shù)中加以考慮D.直接使用原始數(shù)據(jù)集進(jìn)行訓(xùn)練,忽略類別不平衡二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋如何使用機(jī)器學(xué)習(xí)進(jìn)行激光雷達(dá)數(shù)據(jù)處理。2、(本題5分)說(shuō)明機(jī)器學(xué)習(xí)中模型的正則化方法。3、(本題5分)解釋機(jī)器學(xué)習(xí)中AdaBoost算法的機(jī)制。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)結(jié)合實(shí)際應(yīng)用,論述機(jī)器學(xué)習(xí)在物流倉(cāng)儲(chǔ)管理中的作用。分析庫(kù)存優(yōu)化、貨物分揀、倉(cāng)庫(kù)布局等方面的機(jī)器學(xué)習(xí)技術(shù)和應(yīng)用前景。2、(本題5分)論述機(jī)器學(xué)習(xí)在智能醫(yī)療輔助診斷中的應(yīng)用。分析機(jī)器學(xué)習(xí)算法如何用于輔助醫(yī)生進(jìn)行疾病診斷,提高診斷準(zhǔn)確性。討論面臨的挑戰(zhàn)及未來(lái)發(fā)展趨勢(shì)。3、(本題5分)詳細(xì)探討在圖像去噪任務(wù)中,機(jī)器學(xué)習(xí)算法(如基于卷積神經(jīng)網(wǎng)絡(luò)的方法)的原理和性能。分析去噪效果的評(píng)估指標(biāo)和實(shí)際應(yīng)用。4、(本題5分)論述深度學(xué)習(xí)中的優(yōu)化算法,如隨機(jī)梯度下降(SGD)及其變體(Adagrad、Adadelta、Adam等)。分析它們?cè)谑諗克俣?、穩(wěn)定性和對(duì)不同數(shù)據(jù)的適應(yīng)性方面的特點(diǎn)。5、(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論