青海省西寧市重點(diǎn)中學(xué)2025屆高三(最后沖刺)數(shù)學(xué)試卷含解析_第1頁
青海省西寧市重點(diǎn)中學(xué)2025屆高三(最后沖刺)數(shù)學(xué)試卷含解析_第2頁
青海省西寧市重點(diǎn)中學(xué)2025屆高三(最后沖刺)數(shù)學(xué)試卷含解析_第3頁
青海省西寧市重點(diǎn)中學(xué)2025屆高三(最后沖刺)數(shù)學(xué)試卷含解析_第4頁
青海省西寧市重點(diǎn)中學(xué)2025屆高三(最后沖刺)數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

青海省西寧市重點(diǎn)中學(xué)2025屆高三(最后沖刺)數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.2.據(jù)國家統(tǒng)計局發(fā)布的數(shù)據(jù),2019年11月全國CPI(居民消費(fèi)價格指數(shù)),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點(diǎn).下圖是2019年11月CPI一籃子商品權(quán)重,根據(jù)該圖,下列結(jié)論錯誤的是()A.CPI一籃子商品中所占權(quán)重最大的是居住B.CPI一籃子商品中吃穿住所占權(quán)重超過50%C.豬肉在CPI一籃子商品中所占權(quán)重約為2.5%D.豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為0.18%3.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個成員檢測呈陽性的概率均為()且相互獨(dú)立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當(dāng)時,最大,則()A. B. C. D.4.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側(cè)視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.5.某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統(tǒng)計如圖中的條形圖,已知年的就醫(yī)費(fèi)用比年的就醫(yī)費(fèi)用增加了元,則該人年的儲畜費(fèi)用為()A.元 B.元 C.元 D.元6.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實(shí)數(shù)a=()A. B. C.2 D.﹣27.某學(xué)校調(diào)查了200名學(xué)生每周的自習(xí)時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習(xí)時間的范圍是17.5,30],樣本數(shù)據(jù)分組為17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根據(jù)直方圖,這200名學(xué)生中每周的自習(xí)時間不少于22.5小時的人數(shù)是()A.56 B.60 C.140 D.1208.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.9.在正方體中,點(diǎn),,分別為棱,,的中點(diǎn),給出下列命題:①;②;③平面;④和成角為.正確命題的個數(shù)是()A.0 B.1 C.2 D.310.已知橢圓+=1(a>b>0)與直線交于A,B兩點(diǎn),焦點(diǎn)F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.11.對于函數(shù),定義滿足的實(shí)數(shù)為的不動點(diǎn),設(shè),其中且,若有且僅有一個不動點(diǎn),則的取值范圍是()A.或 B.C.或 D.12.已知正項(xiàng)數(shù)列滿足:,設(shè),當(dāng)最小時,的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若關(guān)于的方程恰有四個不同的解,則實(shí)數(shù)的取值范圍是______.14.正四面體的一個頂點(diǎn)是圓柱上底面的圓心,另外三個頂點(diǎn)圓柱下底面的圓周上,記正四面體的體積為,圓柱的體積為,則的值是______.15.函數(shù)在的零點(diǎn)個數(shù)為_________.16.已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為C上一點(diǎn),PQ垂直l于點(diǎn)Q,M,N分別為PQ,PF的中點(diǎn),MN與x軸相交于點(diǎn)R,若∠NRF=60°,則|FR|等于_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)討論零點(diǎn)的個數(shù).18.(12分)P是圓上的動點(diǎn),P點(diǎn)在x軸上的射影是D,點(diǎn)M滿足.(1)求動點(diǎn)M的軌跡C的方程,并說明軌跡是什么圖形;(2)過點(diǎn)的直線l與動點(diǎn)M的軌跡C交于不同的兩點(diǎn)A,B,求以O(shè)A,OB為鄰邊的平行四邊形OAEB的頂點(diǎn)E的軌跡方程.19.(12分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,滿足,,,,恰為等比數(shù)列的前3項(xiàng).(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和為;若對均滿足,求整數(shù)的最大值;(3)是否存在數(shù)列滿足等式成立,若存在,求出數(shù)列的通項(xiàng)公式;若不存在,請說明理由.20.(12分)在中,角A、B、C的對邊分別為a、b、c,且.(1)求角A的大?。唬?)若,的平分線與交于點(diǎn)D,與的外接圓交于點(diǎn)E(異于點(diǎn)A),,求的值.21.(12分)已知函數(shù).(1)若,且,求證:;(2)若時,恒有,求的最大值.22.(10分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)已知在處的切線與軸垂直,若方程有三個實(shí)數(shù)解、、(),求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點(diǎn)睛】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎(chǔ)題.2、D【解析】

A.從第一個圖觀察居住占23%,與其他比較即可.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D.易知豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為2.1%+2.5%=4.6%.【詳解】A.CPI一籃子商品中居住占23%,所占權(quán)重最大的,故正確.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權(quán)重超過50%,故正確.C.食品占中19.9%,分解后后可知豬肉是占在CPI一籃子商品中所占權(quán)重約為2.5%,故正確.D.豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點(diǎn)睛】本題主要考查統(tǒng)計圖的識別與應(yīng)用,還考查了理解辨析的能力,屬于基礎(chǔ)題.3、A【解析】

根據(jù)題意分別求出事件A:檢測5個人確定為“感染高危戶”發(fā)生的概率和事件B:檢測6個人確定為“感染高危戶”發(fā)生的概率,即可得出的表達(dá)式,再根據(jù)基本不等式即可求出.【詳解】設(shè)事件A:檢測5個人確定為“感染高危戶”,事件B:檢測6個人確定為“感染高危戶”,∴,.即設(shè),則∴當(dāng)且僅當(dāng)即時取等號,即.故選:A.【點(diǎn)睛】本題主要考查概率的計算,涉及相互獨(dú)立事件同時發(fā)生的概率公式的應(yīng)用,互斥事件概率加法公式的應(yīng)用,以及基本不等式的應(yīng)用,解題關(guān)鍵是對題意的理解和事件的分解,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力和數(shù)學(xué)建模能力,屬于較難題.4、A【解析】

作出其直觀圖,然后結(jié)合數(shù)據(jù)根據(jù)勾股定定理計算每一條棱長即可.【詳解】根據(jù)三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.【點(diǎn)睛】本題考查了四棱錐的三視圖的有關(guān)計算,正確還原直觀圖是解題關(guān)鍵,屬于基礎(chǔ)題.5、A【解析】

根據(jù)2018年的家庭總收人為元,且就醫(yī)費(fèi)用占得到就醫(yī)費(fèi)用,再根據(jù)年的就醫(yī)費(fèi)用比年的就醫(yī)費(fèi)用增加了元,得到年的就醫(yī)費(fèi)用,然后由年的就醫(yī)費(fèi)用占總收人,得到2019年的家庭總收人再根據(jù)儲畜費(fèi)用占總收人求解.【詳解】因?yàn)?018年的家庭總收人為元,且就醫(yī)費(fèi)用占所以就醫(yī)費(fèi)用因?yàn)槟甑木歪t(yī)費(fèi)用比年的就醫(yī)費(fèi)用增加了元,所以年的就醫(yī)費(fèi)用元,而年的就醫(yī)費(fèi)用占總收人所以2019年的家庭總收人為而儲畜費(fèi)用占總收人所以儲畜費(fèi)用:故選:A【點(diǎn)睛】本題主要考查統(tǒng)計中的折線圖和條形圖的應(yīng)用,還考查了建模解模的能力,屬于基礎(chǔ)題.6、D【解析】

化簡z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因?yàn)閦=(1+2i)(1+ai)=,又因?yàn)閦∈R,所以,解得a=-2.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算及概念,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.7、C【解析】

試題分析:由題意得,自習(xí)時間不少于小時的頻率為,故自習(xí)時間不少于小時的頻率為,故選C.考點(diǎn):頻率分布直方圖及其應(yīng)用.8、C【解析】

由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據(jù)此可計算出答案.【詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【點(diǎn)睛】本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復(fù)幾何體是解題的關(guān)鍵.9、C【解析】

建立空間直角坐標(biāo)系,利用向量的方法對四個命題逐一分析,由此得出正確命題的個數(shù).【詳解】設(shè)正方體邊長為,建立空間直角坐標(biāo)系如下圖所示,,.①,,所以,故①正確.②,,不存在實(shí)數(shù)使,故不成立,故②錯誤.③,,,故平面不成立,故③錯誤.④,,設(shè)和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個.故選:C【點(diǎn)睛】本小題主要考查空間線線、線面位置關(guān)系的向量判斷方法,考查運(yùn)算求解能力,屬于中檔題.10、A【解析】

聯(lián)立直線與橢圓方程求出交點(diǎn)A,B兩點(diǎn),利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因?yàn)?,,由平面向量垂直的坐?biāo)表示可得,,因?yàn)?,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點(diǎn)睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標(biāo)表示;考查運(yùn)算求解能力和知識遷移能力;利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.11、C【解析】

根據(jù)不動點(diǎn)的定義,利用換底公式分離參數(shù)可得;構(gòu)造函數(shù),并討論的單調(diào)性與最值,畫出函數(shù)圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當(dāng)時,,則在內(nèi)單調(diào)遞增;當(dāng)時,,則在內(nèi)單調(diào)遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個不動點(diǎn),可得得或,解得或.故選:C【點(diǎn)睛】本題考查了函數(shù)新定義的應(yīng)用,由導(dǎo)數(shù)確定函數(shù)的單調(diào)性與最值,分離參數(shù)法與構(gòu)造函數(shù)方法的應(yīng)用,屬于中檔題.12、B【解析】

由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當(dāng)且僅當(dāng)時取得最小值,此時.故選:B【點(diǎn)睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運(yùn)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè),判斷為偶函數(shù),考慮x>0時,的解析式和零點(diǎn)個數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,作函數(shù)大致圖象,即可得到的范圍.【詳解】設(shè),則在是偶函數(shù),當(dāng)時,,由得,記,,,故函數(shù)在增,而,所以在減,在增,,當(dāng)時,,當(dāng)時,,因此的圖象為因此實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查了函數(shù)的零點(diǎn)的個數(shù)問題,涉及構(gòu)造函數(shù),函數(shù)的奇偶性,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,考查了數(shù)形結(jié)合思想方法,以及化簡運(yùn)算能力和推理能力,屬于難題.14、【解析】

設(shè)正四面體的棱長為,求出底面外接圓的半徑與高,代入體積公式求解.【詳解】解:設(shè)正四面體的棱長為,則底面積為,底面外接圓的半徑為,高為.∴正四面體的體積,圓柱的體積.則.故答案為:.【點(diǎn)睛】本題主要考查多面體與旋轉(zhuǎn)體體積的求法,考查計算能力,屬于中檔題.15、1【解析】

本問題轉(zhuǎn)化為曲線交點(diǎn)個數(shù)問題,在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,利用數(shù)形結(jié)合思想進(jìn)行求解即可.【詳解】問題函數(shù)在的零點(diǎn)個數(shù),可以轉(zhuǎn)化為曲線交點(diǎn)個數(shù)問題.在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,如下圖所示:由圖象可知:當(dāng)時,兩個函數(shù)只有一個交點(diǎn).故答案為:1【點(diǎn)睛】本題考查了求函數(shù)的零點(diǎn)個數(shù)問題,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想.16、2【解析】

由題意知:,,,.由∠NRF=60°,可得為等邊三角形,MF⊥PQ,可得F為HR的中點(diǎn),即求.【詳解】不妨設(shè)點(diǎn)P在第一象限,如圖所示,連接MF,QF.∵拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為C上一點(diǎn)∴,.∵M(jìn),N分別為PQ,PF的中點(diǎn),∴,∵PQ垂直l于點(diǎn)Q,∴PQ//OR,∵,∠NRF=60°,∴為等邊三角形,∴MF⊥PQ,易知四邊形和四邊形都是平行四邊形,∴F為HR的中點(diǎn),∴,故答案為:2.【點(diǎn)睛】本題主要考查拋物線的定義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】

(1)求導(dǎo)后分析導(dǎo)函數(shù)的正負(fù)再判斷單調(diào)性即可.(2),有零點(diǎn)等價于方程實(shí)數(shù)根,再換元將原方程轉(zhuǎn)化為,再求導(dǎo)分析的圖像數(shù)形結(jié)合求解即可.【詳解】(1)的定義域?yàn)?,當(dāng)時,,所以在單調(diào)遞減;當(dāng)時,,所以在單調(diào)遞增,所以的減區(qū)間為,增區(qū)間為.(2),有零點(diǎn)等價于方程實(shí)數(shù)根,令則原方程轉(zhuǎn)化為,令,.令,,∴,,,,,當(dāng)時,,當(dāng)時,.如圖可知①當(dāng)時,有唯一零點(diǎn),即有唯一零點(diǎn);②當(dāng)時,有兩個零點(diǎn),即有兩個零點(diǎn);③當(dāng)時,有唯一零點(diǎn),即有唯一零點(diǎn);④時,此時無零點(diǎn),即此時無零點(diǎn).【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性的方法,同時也考查了利用導(dǎo)數(shù)分析函數(shù)零點(diǎn)的問題,屬于中檔題.18、(1)點(diǎn)M的軌跡C的方程為,軌跡C是以,為焦點(diǎn),長軸長為4的橢圓(2)【解析】

(1)設(shè),根據(jù)可求得,代入圓的方程可得所求軌跡方程;根據(jù)軌跡方程可知軌跡是以,為焦點(diǎn),長軸長為的橢圓;(2)設(shè),與橢圓方程聯(lián)立,利用求得;利用韋達(dá)定理表示出與,根據(jù)平行四邊形和向量的坐標(biāo)運(yùn)算求得,消去后得到軌跡方程;根據(jù)求得的取值范圍,進(jìn)而得到最終結(jié)果.【詳解】(1)設(shè),則由知:點(diǎn)在圓上點(diǎn)的軌跡的方程為:軌跡是以,為焦點(diǎn),長軸長為的橢圓(2)設(shè),由題意知的斜率存在設(shè),代入得:則,解得:設(shè),,則四邊形為平行四邊形又∴,消去得:頂點(diǎn)的軌跡方程為【點(diǎn)睛】本題考查圓錐曲線中的軌跡方程的求解問題,關(guān)鍵是能夠利用已知中所給的等量關(guān)系建立起動點(diǎn)橫縱坐標(biāo)滿足的關(guān)系式,進(jìn)而通過化簡整理得到結(jié)果;易錯點(diǎn)是求得軌跡方程后,忽略的取值范圍.19、(2),(2),的最大整數(shù)是2.(3)存在,【解析】

(2)由可得(),然后把這兩個等式相減,化簡得,公差為2,因?yàn)椋?,為等比?shù)列,所以,化簡計算得,,從而得到數(shù)列的通項(xiàng)公式,再計算出,,,從而可求出數(shù)列的通項(xiàng)公式;(2)令,化簡計算得,從而可得數(shù)列是遞增的,所以只要的最小值大于即可,而的最小值為,所以可得答案;(3)由題意可知,,即,這個可看成一個數(shù)列的前項(xiàng)和,再寫出其前()項(xiàng)和,兩式相減得,,利用同樣的方法可得.【詳解】解:(2)由題,當(dāng)時,,即當(dāng)時,①②①-②得,整理得,又因?yàn)楦黜?xiàng)均為正數(shù)的數(shù)列.故是從第二項(xiàng)的等差數(shù)列,公差為2.又恰為等比數(shù)列的前3項(xiàng),故,解得.又,故,因?yàn)橐渤闪ⅲ适且詾槭醉?xiàng),2為公差的等差數(shù)列.故.即2,4,8恰為等比數(shù)列的前3項(xiàng),故是以為首項(xiàng),公比為的等比數(shù)列,故.綜上,(2)令,則所以數(shù)列是遞增的,若對均滿足,只要的最小值大于即可因?yàn)榈淖钚≈禐?,所以,所以的最大整?shù)是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在這樣的數(shù)列,【點(diǎn)睛】此題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,最值,恒成立問題,考查了推理能力與計算能力,屬于中檔題.20、(1);(2)【解析】

(1)由,利用正弦定理轉(zhuǎn)化整理為,再利用余弦定理求解.(2)根據(jù),利用兩角和的余弦得到,利用數(shù)形結(jié)合,設(shè),在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因?yàn)?,所以,即,即,所?(2)∵,.所以,從而.所以,.不妨設(shè),O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.【點(diǎn)睛】本題主要考查平面向量的模的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.21、(1)見解析;(2).【解析】

(1)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,并設(shè),則,,將不等式等價轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,通過推導(dǎo)出來證得結(jié)論;(2)構(gòu)造函數(shù),對實(shí)數(shù)分、、,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最小值,再通過構(gòu)造新函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最大值,可得出的最大值.【詳解】(1),,所以,函數(shù)單調(diào)遞增,所以,當(dāng)時,,此時,函數(shù)單調(diào)遞減;當(dāng)時,,此時,函數(shù)單調(diào)遞增.要證,即證.不妨設(shè),則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論