皖江名校2025屆高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第1頁
皖江名校2025屆高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第2頁
皖江名校2025屆高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第3頁
皖江名校2025屆高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第4頁
皖江名校2025屆高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

皖江名校2025屆高考適應(yīng)性考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列的前項(xiàng)和為,,,則()A.25 B.32 C.35 D.402.已知若(1-ai)(3+2i)為純虛數(shù),則a的值為()A. B. C. D.3.已知圓關(guān)于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.4.若點(diǎn)是角的終邊上一點(diǎn),則()A. B. C. D.5.設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.36.雙曲線:(,)的一個(gè)焦點(diǎn)為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.7.由曲線圍成的封閉圖形的面積為()A. B. C. D.8.設(shè)函數(shù)滿足,則的圖像可能是A. B.C. D.9.在中,內(nèi)角所對的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列10.某地區(qū)高考改革,實(shí)行“3+2+1”模式,即“3”指語文、數(shù)學(xué)、外語三門必考科目,“1”指在物理、歷史兩門科目中必選一門,“2”指在化學(xué)、生物、政治、地理以及除了必選一門以外的歷史或物理這五門學(xué)科中任意選擇兩門學(xué)科,則一名學(xué)生的不同選科組合有()A.8種 B.12種 C.16種 D.20種11.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.12.已知為虛數(shù)單位,復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的極大值為________.14.在的展開式中,常數(shù)項(xiàng)為________.(用數(shù)字作答)15.若滿足約束條件,則的最大值為__________.16.如圖,在正四棱柱中,P是側(cè)棱上一點(diǎn),且.設(shè)三棱錐的體積為,正四棱柱的體積為V,則的值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(,為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線上的點(diǎn)M對應(yīng)的參數(shù),射線與曲線交于點(diǎn).(1)求曲線,的直角坐標(biāo)方程;(2)若點(diǎn)A,B為曲線上的兩個(gè)點(diǎn)且,求的值.18.(12分)已知函數(shù)(1)若對任意恒成立,求實(shí)數(shù)的取值范圍;(2)求證:19.(12分)己知點(diǎn),分別是橢圓的上頂點(diǎn)和左焦點(diǎn),若與圓相切于點(diǎn),且點(diǎn)是線段靠近點(diǎn)的三等分點(diǎn).求橢圓的標(biāo)準(zhǔn)方程;直線與橢圓只有一個(gè)公共點(diǎn),且點(diǎn)在第二象限,過坐標(biāo)原點(diǎn)且與垂直的直線與圓相交于,兩點(diǎn),求面積的取值范圍.20.(12分)已知,,動(dòng)點(diǎn)滿足直線與直線的斜率之積為,設(shè)點(diǎn)的軌跡為曲線.(1)求曲線的方程;(2)若過點(diǎn)的直線與曲線交于,兩點(diǎn),過點(diǎn)且與直線垂直的直線與相交于點(diǎn),求的最小值及此時(shí)直線的方程.21.(12分)已知,且滿足,證明:.22.(10分)已知函數(shù).(1)求不等式的解集;(2)若正數(shù)、滿足,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

設(shè)出等差數(shù)列的首項(xiàng)和公差,即可根據(jù)題意列出兩個(gè)方程,求出通項(xiàng)公式,從而求得.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,公差為,則,解得,∴,即有.故選:C.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式的求法和應(yīng)用,涉及等差數(shù)列的前項(xiàng)和公式的應(yīng)用,屬于容易題.2、A【解析】

根據(jù)復(fù)數(shù)的乘法運(yùn)算法則化簡可得,根據(jù)純虛數(shù)的概念可得結(jié)果.【詳解】由題可知原式為,該復(fù)數(shù)為純虛數(shù),所以.故選:A【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算和復(fù)數(shù)的分類,屬基礎(chǔ)題.3、C【解析】

將圓,化為標(biāo)準(zhǔn)方程為,求得圓心為.根據(jù)圓關(guān)于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據(jù)求解.【詳解】已知圓,所以其標(biāo)準(zhǔn)方程為:,所以圓心為.因?yàn)殡p曲線,所以其漸近線方程為,又因?yàn)閳A關(guān)于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C【點(diǎn)睛】本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.4、A【解析】

根據(jù)三角函數(shù)的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點(diǎn)是角的終邊上一點(diǎn),根據(jù)三角函數(shù)的定義,可得,則,故選A.【點(diǎn)睛】本題主要考查了三角函數(shù)的定義和正弦的倍角公式的化簡、求值,其中解答中根據(jù)三角函數(shù)的定義和正弦的倍角公式,準(zhǔn)確化簡、計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5、C【解析】

先根據(jù)奇偶性,求出的解析式,令,即可求出?!驹斀狻恳?yàn)椤⒎謩e是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C。【點(diǎn)睛】本題主要考查函數(shù)性質(zhì)奇偶性的應(yīng)用。6、A【解析】

根據(jù)題意得到,化簡得到,得到答案.【詳解】根據(jù)題意知:焦點(diǎn)到漸近線的距離為,故,故漸近線為.故選:.【點(diǎn)睛】本題考查了直線和圓的位置關(guān)系,雙曲線的漸近線,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.7、A【解析】

先計(jì)算出兩個(gè)圖像的交點(diǎn)分別為,再利用定積分算兩個(gè)圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點(diǎn)睛】本題考察定積分的應(yīng)用,屬于基礎(chǔ)題.解題時(shí)注意積分區(qū)間和被積函數(shù)的選取.8、B【解析】根據(jù)題意,確定函數(shù)的性質(zhì),再判斷哪一個(gè)圖像具有這些性質(zhì).由得是偶函數(shù),所以函數(shù)的圖象關(guān)于軸對稱,可知B,D符合;由得是周期為2的周期函數(shù),選項(xiàng)D的圖像的最小正周期是4,不符合,選項(xiàng)B的圖像的最小正周期是2,符合,故選B.9、C【解析】

由等差數(shù)列的性質(zhì)、同角三角函數(shù)的關(guān)系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結(jié)果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理;以上特征都不明顯時(shí),則要考慮兩個(gè)定理都有可能用到.10、C【解析】

分兩類進(jìn)行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對應(yīng)的組合數(shù),即可求出結(jié)果.【詳解】若一名學(xué)生只選物理和歷史中的一門,則有種組合;若一名學(xué)生物理和歷史都選,則有種組合;因此共有種組合.故選C【點(diǎn)睛】本題主要考查兩個(gè)計(jì)數(shù)原理,熟記其計(jì)數(shù)原理的概念,即可求出結(jié)果,屬于??碱}型.11、A【解析】

求導(dǎo)得到,根據(jù)切線方程得到,故,設(shè),求導(dǎo)得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故,計(jì)算得到答案.【詳解】,則,取,,故,.故,故,.設(shè),,取,解得.故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故.故選:.【點(diǎn)睛】本題考查函數(shù)的切線問題,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.12、B【解析】

求出復(fù)數(shù),得出其對應(yīng)點(diǎn)的坐標(biāo),確定所在象限.【詳解】由題意,對應(yīng)點(diǎn)坐標(biāo)為,在第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

對函數(shù)求導(dǎo),根據(jù)函數(shù)單調(diào)性,即可容易求得函數(shù)的極大值.【詳解】依題意,得.所以當(dāng)時(shí),;當(dāng)時(shí),.所以當(dāng)時(shí),函數(shù)有極大值.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),考查運(yùn)算求解能力以及化歸轉(zhuǎn)化思想,屬基礎(chǔ)題.14、【解析】

的展開式的通項(xiàng)為,取計(jì)算得到答案.【詳解】的展開式的通項(xiàng)為:,取得到常數(shù)項(xiàng).故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力.15、4【解析】

作出可行域如圖所示:由,解得.目標(biāo)函數(shù),即為,平移斜率為-1的直線,經(jīng)過點(diǎn)時(shí),.16、【解析】

設(shè)正四棱柱的底面邊長,高,再根據(jù)柱體、錐體的體積公式計(jì)算可得.【詳解】解:設(shè)正四棱柱的底面邊長,高,則,即故答案為:【點(diǎn)睛】本題考查柱體、錐體的體積計(jì)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)..(2)【解析】

(1)先求解a,b,消去參數(shù),即得曲線的直角坐標(biāo)方程;再求解,利用極坐標(biāo)和直角坐標(biāo)的互化公式,即得曲線的直角坐標(biāo)方程;(2)由于,可設(shè),,代入曲線直角坐標(biāo)方程,可得的關(guān)系,轉(zhuǎn)化,可得解.【詳解】(1)將及對應(yīng)的參數(shù),代入得,即,所以曲線的方程為,為參數(shù),所以曲線的直角坐標(biāo)方程為.設(shè)圓的半徑為R,由題意,圓的極坐標(biāo)方程為(或),將點(diǎn)代入,得,即,所以曲線的極坐標(biāo)方程為,所以曲線的直角坐標(biāo)方程為.(2)由于,故可設(shè),代入曲線直角坐標(biāo)方程,可得,,所以.【點(diǎn)睛】本題考查了極坐標(biāo)和直角坐標(biāo),參數(shù)方程和一般方程的互化以及極坐標(biāo)的幾何意義的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.18、(1);(2)見解析.【解析】

(1)將問題轉(zhuǎn)化為對任意恒成立,換元構(gòu)造新函數(shù)即可得解;(2)結(jié)合(1)可得,令,求導(dǎo)后證明其導(dǎo)函數(shù)單調(diào)遞增,結(jié)合,即可得函數(shù)的單調(diào)區(qū)間和最小值,即可得證.【詳解】(1)對任意恒成立等價(jià)于對任意恒成立,令,,則,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;有最大值,.(2)證明:由(1)知,當(dāng)時(shí),即,,,令,則,令,則,在上是增函數(shù),又,當(dāng)時(shí),;當(dāng)時(shí),,在上是減函數(shù),在上是增函數(shù),,即,.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決恒成立問題,考查了利用導(dǎo)數(shù)證明不等式,考查了計(jì)算能力和轉(zhuǎn)化化歸思想,屬于中檔題.19、;.【解析】

連接,由三角形相似得,,進(jìn)而得出,,寫出橢圓的標(biāo)準(zhǔn)方程;由得,,因?yàn)橹本€與橢圓相切于點(diǎn),,解得,,因?yàn)辄c(diǎn)在第二象限,所以,,所以,設(shè)直線與垂直交于點(diǎn),則是點(diǎn)到直線的距離,設(shè)直線的方程為,則,求出面積的取值范圍.【詳解】解:連接,由可得,,,橢圓的標(biāo)準(zhǔn)方程;由得,,因?yàn)橹本€與橢圓相切于點(diǎn),所以,即,解得,,即點(diǎn)的坐標(biāo)為,因?yàn)辄c(diǎn)在第二象限,所以,,所以,所以點(diǎn)的坐標(biāo)為,設(shè)直線與垂直交于點(diǎn),則是點(diǎn)到直線的距離,設(shè)直線的方程為,則,當(dāng)且僅當(dāng),即時(shí),有最大值,所以,即面積的取值范圍為.【點(diǎn)睛】本題考查直線和橢圓位置關(guān)系的應(yīng)用,利用基本不等式,屬于難題.20、(1)(2)的最小值為1,此時(shí)直線:【解析】

(1)用直接法求軌跡方程,即設(shè)動(dòng)點(diǎn)為,把已知用坐標(biāo)表示并整理即得.注意取值范圍;(2)設(shè):,將其與曲線的方程聯(lián)立,消元并整理得,設(shè),,則可得,,由求出,將直線方程與聯(lián)立,得,求得,計(jì)算,設(shè).顯然,構(gòu)造,由導(dǎo)數(shù)的知識求得其最小值,同時(shí)可得直線的方程.【詳解】(1)設(shè),則,即整理得(2)設(shè):,將其與曲線的方程聯(lián)立,得即設(shè),,則,將直線:與聯(lián)立,得∴∴設(shè).顯然構(gòu)造在上恒成立所以在上單調(diào)遞增所以,當(dāng)且僅當(dāng),即時(shí)取“=”即的最小值為1,此時(shí)直線:.(注:1.如果按函數(shù)的性質(zhì)求最值可以不扣分;2.若直線方程按斜率是否存在討論,則可以根據(jù)步驟相應(yīng)給分.)【點(diǎn)睛】本題考查求軌跡方程,考查直線與橢圓相交中的最值.直線與橢圓相交問題中常采用“設(shè)而不求”的思想方法,即設(shè)交點(diǎn)坐標(biāo)為,設(shè)直線方程,直線方程與橢圓方程聯(lián)立并消元,然后用韋達(dá)定理得(或),把這個(gè)代入其他條件變形計(jì)算化簡得出結(jié)論,本題屬于難題,對學(xué)生的邏輯推理、運(yùn)算求解能力有一定的要求.21、證明見解析【解析】

將化簡可得,由柯西不等式可得證明.【詳解】解:因?yàn)椋?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論