版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河北省重點(diǎn)中學(xué)2025屆高三二診模擬考試數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切2.已知函數(shù),,且在上是單調(diào)函數(shù),則下列說(shuō)法正確的是()A. B.C.函數(shù)在上單調(diào)遞減 D.函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱3.函數(shù)圖像可能是()A. B. C. D.4.已知函數(shù),若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)5.若,則的虛部是()A. B. C. D.6.中,,為的中點(diǎn),,,則()A. B. C. D.27.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.8.祖暅原理:“冪勢(shì)既同,則積不容異”.意思是說(shuō):兩個(gè)同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個(gè)同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知函數(shù)是上的減函數(shù),當(dāng)最小時(shí),若函數(shù)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.10.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于11.如圖,圓是邊長(zhǎng)為的等邊三角形的內(nèi)切圓,其與邊相切于點(diǎn),點(diǎn)為圓上任意一點(diǎn),,則的最大值為()A. B. C.2 D.12.已知等比數(shù)列的各項(xiàng)均為正數(shù),設(shè)其前n項(xiàng)和,若(),則()A.30 B. C. D.62二、填空題:本題共4小題,每小題5分,共20分。13.對(duì)定義在上的函數(shù),如果同時(shí)滿足以下兩個(gè)條件:(1)對(duì)任意的總有;(2)當(dāng),,時(shí),總有成立.則稱函數(shù)稱為G函數(shù).若是定義在上G函數(shù),則實(shí)數(shù)a的取值范圍為________.14.設(shè)復(fù)數(shù)滿足,則_________.15.已知函數(shù),(其中e為自然對(duì)數(shù)的底數(shù)),若關(guān)于x的方程恰有5個(gè)相異的實(shí)根,則實(shí)數(shù)a的取值范圍為________.16.袋中裝有兩個(gè)紅球、三個(gè)白球,四個(gè)黃球,從中任取四個(gè)球,則其中三種顏色的球均有的概率為________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),證明:對(duì);(2)若函數(shù)在上存在極值,求實(shí)數(shù)的取值范圍。18.(12分)從拋物線C:()外一點(diǎn)作該拋物線的兩條切線PA、PB(切點(diǎn)分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點(diǎn)Q,點(diǎn)在拋物線C上,且(F為拋物線的焦點(diǎn)).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.19.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若對(duì)任意都有,求實(shí)數(shù)的取值范圍.20.(12分)已知矩形中,,E,F(xiàn)分別為,的中點(diǎn).沿將矩形折起,使,如圖所示.設(shè)P、Q分別為線段,的中點(diǎn),連接.(1)求證:平面;(2)求二面角的余弦值.21.(12分)如圖,已知四棱錐,底面為邊長(zhǎng)為2的菱形,平面,,是的中點(diǎn),.(Ⅰ)證明:;(Ⅱ)若為上的動(dòng)點(diǎn),求與平面所成最大角的正切值.22.(10分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)求曲線的普通方程及直線的直角坐標(biāo)方程;(2)求曲線上的點(diǎn)到直線的距離的最大值與最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.2、B【解析】
根據(jù)函數(shù),在上是單調(diào)函數(shù),確定,然后一一驗(yàn)證,A.若,則,由,得,但.B.由,,確定,再求解驗(yàn)證.C.利用整體法根據(jù)正弦函數(shù)的單調(diào)性判斷.D.計(jì)算是否為0.【詳解】因?yàn)楹瘮?shù),在上是單調(diào)函數(shù),所以,即,所以,若,則,又因?yàn)?,即,解得,而,故A錯(cuò)誤.由,不妨令,得由,得或當(dāng)時(shí),,不合題意.當(dāng)時(shí),,此時(shí)所以,故B正確.因?yàn)?,函?shù),在上是單調(diào)遞增,故C錯(cuò)誤.,故D錯(cuò)誤.故選:B【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)及其應(yīng)用,還考查了運(yùn)算求解的能力,屬于較難的題.3、D【解析】
先判斷函數(shù)的奇偶性可排除選項(xiàng)A,C,當(dāng)時(shí),可分析函數(shù)值為正,即可判斷選項(xiàng).【詳解】,,即函數(shù)為偶函數(shù),故排除選項(xiàng)A,C,當(dāng)正數(shù)越來(lái)越小,趨近于0時(shí),,所以函數(shù),故排除選項(xiàng)B,故選:D【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性,識(shí)別函數(shù)的圖象,屬于中檔題.4、C【解析】
利用導(dǎo)數(shù)求得在上遞增,結(jié)合與圖象,判斷出的大小關(guān)系,由此比較出的大小關(guān)系.【詳解】因?yàn)椋栽谏蠁握{(diào)遞增;在同一坐標(biāo)系中作與圖象,,可得,故.故選:C【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用函數(shù)的單調(diào)性比較大小,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.5、D【解析】
通過(guò)復(fù)數(shù)的乘除運(yùn)算法則化簡(jiǎn)求解復(fù)數(shù)為:的形式,即可得到復(fù)數(shù)的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.6、D【解析】
在中,由正弦定理得;進(jìn)而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點(diǎn)睛】本題主要考查了正余弦定理的應(yīng)用,考查了學(xué)生的運(yùn)算求解能力.7、B【解析】
列出每一次循環(huán),直到計(jì)數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點(diǎn)睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.8、A【解析】
由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個(gè)正放的正四面體,一個(gè)倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點(diǎn)睛】本題主要考查充分條件、必要條件的判定,意在考查學(xué)生的邏輯推理能力.9、A【解析】
首先根據(jù)為上的減函數(shù),列出不等式組,求得,所以當(dāng)最小時(shí),,之后將函數(shù)零點(diǎn)個(gè)數(shù)轉(zhuǎn)化為函數(shù)圖象與直線交點(diǎn)的個(gè)數(shù)問(wèn)題,畫出圖形,數(shù)形結(jié)合得到結(jié)果.【詳解】由于為上的減函數(shù),則有,可得,所以當(dāng)最小時(shí),,函數(shù)恰有兩個(gè)零點(diǎn)等價(jià)于方程有兩個(gè)實(shí)根,等價(jià)于函數(shù)與的圖像有兩個(gè)交點(diǎn).畫出函數(shù)的簡(jiǎn)圖如下,而函數(shù)恒過(guò)定點(diǎn),數(shù)形結(jié)合可得的取值范圍為.故選:A.【點(diǎn)睛】該題考查的是有關(guān)函數(shù)的問(wèn)題,涉及到的知識(shí)點(diǎn)有分段函數(shù)在定義域上單調(diào)減求參數(shù)的取值范圍,根據(jù)函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題目.10、C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應(yīng)選答案C.11、C【解析】
建立坐標(biāo)系,寫出相應(yīng)的點(diǎn)坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【詳解】以D點(diǎn)為原點(diǎn),BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點(diǎn)的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.【點(diǎn)睛】這個(gè)題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問(wèn)題.通過(guò)向量的運(yùn)算,將問(wèn)題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問(wèn)題的一般方法.12、B【解析】
根據(jù),分別令,結(jié)合等比數(shù)列的通項(xiàng)公式,得到關(guān)于首項(xiàng)和公比的方程組,解方程組求出首項(xiàng)和公式,最后利用等比數(shù)列前n項(xiàng)和公式進(jìn)行求解即可.【詳解】設(shè)等比數(shù)列的公比為,由題意可知中:.由,分別令,可得、,由等比數(shù)列的通項(xiàng)公式可得:,因此.故選:B【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由不等式恒成立問(wèn)題采用分離變量最值法:對(duì)任意的恒成立,解得,又在,恒成立,即,所以,從而可得.【詳解】因?yàn)槭嵌x在上G函數(shù),所以對(duì)任意的總有,則對(duì)任意的恒成立,解得,當(dāng)時(shí),又因?yàn)椋?,時(shí),總有成立,即恒成立,即恒成立,又此時(shí)的最小值為,即恒成立,又因?yàn)榻獾?故答案為:【點(diǎn)睛】本題是一道函數(shù)新定義題目,考查了不等式恒成立求參數(shù)的取值范圍,考查了學(xué)生分析理解能力,屬于中檔題.14、.【解析】
利用復(fù)數(shù)的運(yùn)算法則首先可得出,再根據(jù)共軛復(fù)數(shù)的概念可得結(jié)果.【詳解】∵復(fù)數(shù)滿足,∴,∴,故而可得,故答案為.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則,共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.15、【解析】
作出圖象,求出方程的根,分類討論的正負(fù),數(shù)形結(jié)合即可.【詳解】當(dāng)時(shí),令,解得,所以當(dāng)時(shí),,則單調(diào)遞增,當(dāng)時(shí),,則單調(diào)遞減,當(dāng)時(shí),單調(diào)遞減,且,作出函數(shù)的圖象如圖:(1)當(dāng)時(shí),方程整理得,只有2個(gè)根,不滿足條件;(2)若,則當(dāng)時(shí),方程整理得,則,,此時(shí)各有1解,故當(dāng)時(shí),方程整理得,有1解同時(shí)有2解,即需,,因?yàn)椋?),故此時(shí)滿足題意;或有2解同時(shí)有1解,則需,由(1)可知不成立;或有3解同時(shí)有0解,根據(jù)圖象不存在此種情況,或有0解同時(shí)有3解,則,解得,故,(3)若,顯然當(dāng)時(shí),和均無(wú)解,當(dāng)時(shí),和無(wú)解,不符合題意.綜上:的范圍是,故答案為:,【點(diǎn)睛】本題主要考查了函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力,屬于中檔題.16、【解析】
基本事件總數(shù)n126,其中三種顏色的球都有包含的基本事件個(gè)數(shù)m72,由此能求出其中三種顏色的球都有的概率.【詳解】解:袋中有2個(gè)紅球,3個(gè)白球和4個(gè)黃球,從中任取4個(gè)球,基本事件總數(shù)n126,其中三種顏色的球都有,可能是2個(gè)紅球,1個(gè)白球和1個(gè)黃球或1個(gè)紅球,2個(gè)白球和1個(gè)黃球或1個(gè)紅球,1個(gè)白球和2個(gè)黃球,所以包含的基本事件個(gè)數(shù)m72,∴其中三種顏色的球都有的概率是p.故答案為:.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見證明;(2)【解析】
(1)利用導(dǎo)數(shù)說(shuō)明函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)的最小值,得到要證明的結(jié)論;(2)問(wèn)題轉(zhuǎn)化為導(dǎo)函數(shù)在區(qū)間上有解,法一:對(duì)a分類討論,分別研究a的不同取值下,導(dǎo)函數(shù)的單調(diào)性及值域,從而得到結(jié)論.法二:構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求得函數(shù)的值域,再利用零點(diǎn)存在定理說(shuō)明函數(shù)存在極值.【詳解】(1)當(dāng)時(shí),,于是,.又因?yàn)?,?dāng)時(shí),且.故當(dāng)時(shí),,即.所以,函數(shù)為上的增函數(shù),于是,.因此,對(duì),;(2)方法一:由題意在上存在極值,則在上存在零點(diǎn),①當(dāng)時(shí),為上的增函數(shù),注意到,,所以,存在唯一實(shí)數(shù),使得成立.于是,當(dāng)時(shí),,為上的減函數(shù);當(dāng)時(shí),,為上的增函數(shù);所以為函數(shù)的極小值點(diǎn);②當(dāng)時(shí),在上成立,所以在上單調(diào)遞增,所以在上沒(méi)有極值;③當(dāng)時(shí),在上成立,所以在上單調(diào)遞減,所以在上沒(méi)有極值,綜上所述,使在上存在極值的的取值范圍是.方法二:由題意,函數(shù)在上存在極值,則在上存在零點(diǎn).即在上存在零點(diǎn).設(shè),,則由單調(diào)性的性質(zhì)可得為上的減函數(shù).即的值域?yàn)?,所以,?dāng)實(shí)數(shù)時(shí),在上存在零點(diǎn).下面證明,當(dāng)時(shí),函數(shù)在上存在極值.事實(shí)上,當(dāng)時(shí),為上的增函數(shù),注意到,,所以,存在唯一實(shí)數(shù),使得成立.于是,當(dāng)時(shí),,為上的減函數(shù);當(dāng)時(shí),,為上的增函數(shù);即為函數(shù)的極小值點(diǎn).綜上所述,當(dāng)時(shí),函數(shù)在上存在極值.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的最值,涉及函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,函數(shù)的最值的求法,考查構(gòu)造法的應(yīng)用,是一道綜合題.18、(1);(2)①證明見解析;②能,.【解析】
(1)根據(jù)拋物線的定義,求出,即可求拋物線C的方程;(2)①設(shè),,寫出切線的方程,解方程組求出點(diǎn)的坐標(biāo).設(shè)點(diǎn),直線AB的方程,代入拋物線方程,利用韋達(dá)定理得到點(diǎn)的坐標(biāo),寫出點(diǎn)的坐標(biāo),,可得線段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點(diǎn)Q的坐標(biāo).【詳解】(1)因?yàn)椋裕磼佄锞€C的方程是.(2)①證明:由得,.設(shè),,則直線PA的方程為(ⅰ),則直線PB的方程為(ⅱ),由(?。┖停áⅲ┙獾茫?,,所以.設(shè)點(diǎn),則直線AB的方程為.由得,則,,所以,所以線段PQ被x軸平分,即被線段CD平分.在①中,令解得,所以,同理得,所以線段CD的中點(diǎn)坐標(biāo)為,即,又因?yàn)橹本€PQ的方程為,所以線段CD的中點(diǎn)在直線PQ上,即線段CD被線段PQ平分.因此,四邊形是平行四邊形.②由①知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當(dāng)點(diǎn)Q為,即為拋物線的焦點(diǎn)時(shí),四邊形是矩形.【點(diǎn)睛】本題考查拋物線的方程,考查直線和拋物線的位置關(guān)系,屬于難題.19、(1)(2)【解析】
利用零點(diǎn)分區(qū)間法,去掉絕對(duì)值符號(hào)分組討論求并集,對(duì)恒成立,則,由三角不等式,得求解【詳解】解:當(dāng)時(shí),不等式即為,可得或或,解得或或,則原不等式的解集為若對(duì)任意、都有,即為,由,當(dāng)取得等號(hào),則,由,可得,則的取值范圍是【點(diǎn)睛】本題考查含有兩個(gè)絕對(duì)值符號(hào)的不等式解法及利用三角不等式解恒成立問(wèn)題.(1)含有兩個(gè)絕對(duì)值符號(hào)的不等式常用解法可用零點(diǎn)分區(qū)間法去掉絕對(duì)值符號(hào),將其轉(zhuǎn)化為與之等價(jià)的不含絕對(duì)值符號(hào)的不等式(組)求解(2)利用三角不等式把不等式恒成立問(wèn)題轉(zhuǎn)化為函數(shù)最值問(wèn)題.20、(1)證明見解析(2)【解析】
(1)取中點(diǎn)R,連接,,可知中,且,由Q是中點(diǎn),可得則有且,即四邊形是平行四邊形,則有,即證得平面.(2)建立空間直角坐標(biāo)系,求得半平面的法向量:,然后利用空間向量的相關(guān)結(jié)論可求得二面角的余弦值.【詳解】(1)取中點(diǎn)R,連接,,則在中,,且,又Q是中點(diǎn),所以,而且,所以,所以四
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國(guó)大型振動(dòng)試驗(yàn)機(jī)行業(yè)市場(chǎng)分析報(bào)告
- 2024-2030年中國(guó)即時(shí)通訊(im)行業(yè)競(jìng)爭(zhēng)格局及投資創(chuàng)新模式分析報(bào)告
- 眉山職業(yè)技術(shù)學(xué)院《電子商務(wù)概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度食品代加工與產(chǎn)品質(zhì)量追溯協(xié)議3篇
- 2024年標(biāo)準(zhǔn)化物業(yè)租賃協(xié)議模板匯編版B版
- 2024年物聯(lián)網(wǎng)農(nóng)業(yè)技術(shù)開發(fā)與合作合同
- 2024年標(biāo)準(zhǔn)股權(quán)轉(zhuǎn)讓協(xié)議一
- 馬鞍山師范高等??茖W(xué)?!冬F(xiàn)場(chǎng)節(jié)目主持實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年城市綜合體土地房屋股權(quán)轉(zhuǎn)讓與建設(shè)合同范本3篇
- 2024年度特色民宿商品房承包銷售合同3篇
- YY/T 0471.4-2004接觸性創(chuàng)面敷料試驗(yàn)方法 第4部分:舒適性
- YY/T 0251-1997微量青霉素試驗(yàn)方法
- YC/T 559-2018煙草特征性成分生物堿的測(cè)定氣相色譜-質(zhì)譜聯(lián)用法和氣相色譜-串聯(lián)質(zhì)譜法
- GB/T 29309-2012電工電子產(chǎn)品加速應(yīng)力試驗(yàn)規(guī)程高加速壽命試驗(yàn)導(dǎo)則
- 齊魯工業(yè)大學(xué)信息管理學(xué)成考復(fù)習(xí)資料
- 公務(wù)員面試-自我認(rèn)知與職位匹配課件
- 中頻電治療儀操作培訓(xùn)課件
- 柔弱的人課文課件
- 動(dòng)物寄生蟲病學(xué)課件
- 電梯曳引系統(tǒng)設(shè)計(jì)-畢業(yè)設(shè)計(jì)
- 三度房室傳導(dǎo)阻滯護(hù)理查房課件
評(píng)論
0/150
提交評(píng)論