




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023屆山東省日照實驗高級中學下學期高三數(shù)學試題第一次模擬考試試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則,,,的大小關(guān)系為()A. B.C. D.2.已知α,β表示兩個不同的平面,l為α內(nèi)的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件3.趙爽是我國古代數(shù)學家、天文學家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設(shè),若在大等邊三角形中隨機取一點,則此點取自小等邊三角形(陰影部分)的概率是()A. B. C. D.4.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.5.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件6.已知集合,,則A. B. C. D.7.設(shè),為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件8.已知正三棱錐的所有頂點都在球的球面上,其底面邊長為4,、、分別為側(cè)棱,,的中點.若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.9.如圖,在平面四邊形中,滿足,且,沿著把折起,使點到達點的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.10.已知數(shù)列滿足:,則()A.16 B.25 C.28 D.3311.已知,則()A. B. C. D.12.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在正三棱柱中,是的中點,,則異面直線與所成的角為____.14.我國古代數(shù)學著作《九章算術(shù)》中記載“今有人共買物,人出八,盈三;人出七,不足四.問人數(shù)、物價各幾何?”設(shè)人數(shù)、物價分別為、,滿足,則_____,_____.15.已知函數(shù)f(x)=若關(guān)于x的方程f(x)=kx有兩個不同的實根,則實數(shù)k的取值范圍是________.16.設(shè)函數(shù),若對于任意的,∈[2,,≠,不等式恒成立,則實數(shù)a的取值范圍是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在平面四邊形中,的面積為.(1)求的長;(2)已知,為銳角,求.18.(12分)已知函數(shù).(1)若在上為單調(diào)函數(shù),求實數(shù)a的取值范圍:(2)若,記的兩個極值點為,,記的最大值與最小值分別為M,m,求的值.19.(12分)己知,函數(shù).(1)若,解不等式;(2)若函數(shù),且存在使得成立,求實數(shù)的取值范圍.20.(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求實數(shù)的取值范圍21.(12分)已知數(shù)列,滿足.(1)求數(shù)列,的通項公式;(2)分別求數(shù)列,的前項和,.22.(10分)已知橢圓的右焦點為,離心率為.(1)若,求橢圓的方程;(2)設(shè)直線與橢圓相交于、兩點,、分別為線段、的中點,若坐標原點在以為直徑的圓上,且,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】因為,所以,因為,,所以,.綜上;故選D.2.A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷.解:根據(jù)題意,由于α,β表示兩個不同的平面,l為α內(nèi)的一條直線,由于“α∥β,則根據(jù)面面平行的性質(zhì)定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結(jié)論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.3.A【解析】
根據(jù)幾何概率計算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點睛】本題考查了幾何概型的概率計算問題,是基礎(chǔ)題.4.D【解析】
本道題結(jié)合雙曲線的性質(zhì)以及余弦定理,建立關(guān)于a與c的等式,計算離心率,即可.【詳解】結(jié)合題意,繪圖,結(jié)合雙曲線性質(zhì)可以得到PO=MO,而,結(jié)合四邊形對角線平分,可得四邊形為平行四邊形,結(jié)合,故對三角形運用余弦定理,得到,而結(jié)合,可得,,代入上式子中,得到,結(jié)合離心率滿足,即可得出,故選D.【點睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.5.B【解析】
先求出滿足的值,然后根據(jù)充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【點睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎(chǔ).解題時可根據(jù)條件與結(jié)論中參數(shù)的取值范圍進行判斷.6.C【解析】分析:根據(jù)集合可直接求解.詳解:,,故選C點睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類問題時要先將參與運算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進行運算.7.D【解析】
充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運算即可說明成立;必要性中,由數(shù)量積運算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數(shù)量積的運算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.8.D【解析】
如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點記為,連接、.依題意,所以,設(shè)球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學生的計算能力和空間想象能力.9.C【解析】
過作于,連接,易知,,從而可證平面,進而可知,當最大時,取得最大值,取的中點,可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當最大時,取得最大值,取的中點,則,所以,因為,所以點在以為焦點的橢圓上(不在左右頂點),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點睛】本題考查三棱錐體積的最大值,考查學生的空間想象能力與計算求解能力,屬于中檔題.10.C【解析】
依次遞推求出得解.【詳解】n=1時,,n=2時,,n=3時,,n=4時,,n=5時,.故選:C【點睛】本題主要考查遞推公式的應(yīng)用,意在考查學生對這些知識的理解掌握水平.11.B【解析】
利用誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡求解即可.【詳解】,本題正確選項:【點睛】本題考查誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計算能力.12.A【解析】
根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【點睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
要求兩條異面直線所成的角,需要通過見中點找中點的方法,找出邊的中點,連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點E,連AE,,易證,∴為異面直線與所成角,設(shè)等邊三角形邊長為,易算得∴在∴故答案為【點睛】本題考查異面直線所成的角,本題是一個典型的異面直線所成的角的問題,解答時也是應(yīng)用典型的見中點找中點的方法,注意求角的三個環(huán)節(jié),一畫,二證,三求.14.【解析】
利用已知條件,通過求解方程組即可得到結(jié)果.【詳解】設(shè)人數(shù)、物價分別為、,滿足,解得,.故答案為:;.【點睛】本題考查函數(shù)與方程的應(yīng)用,方程組的求解,考查計算能力,屬于基礎(chǔ)題.15.【解析】由圖可知,當直線y=kx在直線OA與x軸(不含它們)之間時,y=kx與y=f(x)的圖像有兩個不同交點,即方程有兩個不相同的實根.16.【解析】試題分析:由題意得函數(shù)在[2,上單調(diào)遞增,當時在[2,上單調(diào)遞增;當時在上單調(diào)遞增;在上單調(diào)遞減,因此實數(shù)a的取值范圍是考點:函數(shù)單調(diào)性三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)4.【解析】
(1)利用三角形的面積公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,進而求得,利用同角三角函數(shù)的基本關(guān)系式求得.【詳解】(1)在中,由面積公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,為銳角.【點睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形面積公式,考查同角三角函數(shù)的基本關(guān)系式,屬于中檔題.18.(1);(2)【解析】
(1)求導(dǎo).根據(jù)單調(diào),轉(zhuǎn)化為對恒成立求解(2)由(1)知,是的兩個根,不妨設(shè),令.根據(jù),確定,將轉(zhuǎn)化為.令,用導(dǎo)數(shù)法研究其單調(diào)性求最值.【詳解】(1)的定義域為,.因為單調(diào),所以對恒成立,所以,恒成立,因為,當且僅當時取等號,所以;(2)由(1)知,是的兩個根.從而,,不妨設(shè),則.因為,所以t為關(guān)于a的減函數(shù),所以..令,則.因為當時,在上為減函數(shù).所以當時,.從而,所以在上為減函數(shù).所以當時,.【點睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題.19.(1);(2)【解析】
(1)零點分段解不等式即可(2)等價于,由,得不等式即可求解【詳解】(1)當時,,當時,由,解得;當時,由,解得;當時,由,解得.綜上可知,原不等式的解集為.(2).存在使得成立,等價于.又因為,所以,即.解得,結(jié)合,所以實數(shù)的取值范圍為.【點睛】本題考查絕對值不等式的解法,考查不等式恒成立及最值,考查轉(zhuǎn)化思想,是中檔題20.(1).(2).【解析】試題分析:(Ⅰ)通過討論x的范圍,得到關(guān)于x的不等式組,解出取并集即可;(Ⅱ)求出f(x)的最大值,得到關(guān)于a的不等式,解出即可.試題解析:(1)不等式等價于或或,解得或,所以不等式的解集是;(2),,,解得實數(shù)的取值范圍是.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向.21.(1)(2);【解析】
(1),,可得為公比為2的等比數(shù)列,可得為公差為1的等差數(shù)列,再算出,的通項公式,解方程組即可;(2)利用分組求和法解決.【詳解】(1)依題意有又.可得數(shù)列為公比為2的等比數(shù)列,為公差為1的等差數(shù)列,由,得解得故數(shù)列,的通項公式分別為.(2),.【點睛】本題考查利用遞推公式求數(shù)列的通項公式以及分組
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉利學院宿舍管理制度
- 初三班主任個人計劃(4篇)
- 藝術(shù)設(shè)計創(chuàng)意思維練習題集
- 電子競技產(chǎn)業(yè)發(fā)展策略與市場推廣研究
- 公路工程項目施工中不可忽視的細節(jié)試題及答案
- 帶貨主播合同協(xié)議書范本
- 茶葉合同協(xié)議書范本大全
- 2025年生態(tài)循環(huán)農(nóng)業(yè)經(jīng)濟效益與農(nóng)業(yè)產(chǎn)業(yè)升級分析報告
- 鑒定綠茶婊測試題及答案
- 墳?zāi)钩邪贤瑓f(xié)議書
- 用人施工合同協(xié)議書
- 職業(yè)技術(shù)學院現(xiàn)代通信技術(shù)專業(yè)人才培養(yǎng)方案(2024版)
- 藝考調(diào)式分析試題及答案
- 2020年高考地理試卷(天津)(解析卷)
- 2024北京西城區(qū)五年級(下)期末語文試題及答案
- 氣體分餾裝置操作工試題庫(初中高級工)
- 2025年海南省高三三模高考物理試卷試題(含答案詳解)
- 創(chuàng)傷中心面試題及答案
- 2024年宿州泗縣縣屬國有企業(yè)公開招聘工作人員33人筆試參考題庫附帶答案詳解
- 2025春季學期國開電大本科《人文英語3》一平臺在線形考綜合測試(形考任務(wù))試題及答案
- 燃氣自愿過戶協(xié)議書
評論
0/150
提交評論