版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆西藏自治區(qū)林芝市高三第二次調(diào)研數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)一個(gè)正三棱柱,每條棱長(zhǎng)都相等,一只螞蟻從上底面的某頂點(diǎn)出發(fā),每次只沿著棱爬行并爬到另一個(gè)頂點(diǎn),算一次爬行,若它選擇三個(gè)方向爬行的概率相等,若螞蟻爬行10次,仍然在上底面的概率為,則為()A. B.C. D.2.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個(gè)大于2的偶數(shù)都可以寫(xiě)成兩個(gè)質(zhì)數(shù)(素?cái)?shù))之和,也就是我們所謂的“1+1”問(wèn)題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國(guó)數(shù)學(xué)家潘承洞、王元、陳景潤(rùn)等在哥德巴赫猜想的證明中做出相當(dāng)好的成績(jī).若將6拆成兩個(gè)正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.3.如圖,圓的半徑為,,是圓上的定點(diǎn),,是圓上的動(dòng)點(diǎn),點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,角的始邊為射線,終邊為射線,將表示為的函數(shù),則在上的圖像大致為()A. B. C. D.4.將函數(shù)的圖像向左平移個(gè)單位得到函數(shù)的圖像,則的最小值為()A. B. C. D.5.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.6.以下關(guān)于的命題,正確的是A.函數(shù)在區(qū)間上單調(diào)遞增B.直線需是函數(shù)圖象的一條對(duì)稱軸C.點(diǎn)是函數(shù)圖象的一個(gè)對(duì)稱中心D.將函數(shù)圖象向左平移需個(gè)單位,可得到的圖象7.已知雙曲線:的焦點(diǎn)為,,且上點(diǎn)滿足,,,則雙曲線的離心率為A. B. C. D.58.函數(shù)的對(duì)稱軸不可能為()A. B. C. D.9.若雙曲線的離心率,則該雙曲線的焦點(diǎn)到其漸近線的距離為()A. B.2 C. D.110.在滿足,的實(shí)數(shù)對(duì)中,使得成立的正整數(shù)的最大值為()A.5 B.6 C.7 D.911.已知復(fù)數(shù)滿足,其中為虛數(shù)單位,則().A. B. C. D.12.二項(xiàng)式展開(kāi)式中,項(xiàng)的系數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.滿足約束條件的目標(biāo)函數(shù)的最小值是.14.假如某人有壹元、貳元、伍元、拾元、貳拾元、伍拾元、壹佰元的紙幣各兩張,要支付貳佰壹拾玖(219)元的貨款,則有________種不同的支付方式.15.一次考試后,某班全班50個(gè)人數(shù)學(xué)成績(jī)的平均分為正數(shù),若把當(dāng)成一個(gè)同學(xué)的分?jǐn)?shù),與原來(lái)的50個(gè)分?jǐn)?shù)一起,算出這51個(gè)分?jǐn)?shù)的平均值為,則_________.16.能說(shuō)明“在數(shù)列中,若對(duì)于任意的,,則為遞增數(shù)列”為假命題的一個(gè)等差數(shù)列是______.(寫(xiě)出數(shù)列的通項(xiàng)公式)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)若不等式有解,求實(shí)數(shù)的取值范圍;(2)函數(shù)的最小值為,若正實(shí)數(shù),,滿足,證明:.18.(12分)已知函數(shù).(1)若,且,求證:;(2)若時(shí),恒有,求的最大值.19.(12分)設(shè)為實(shí)數(shù),在極坐標(biāo)系中,已知圓()與直線相切,求的值.20.(12分)△ABC的內(nèi)角的對(duì)邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長(zhǎng).21.(12分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點(diǎn),.(1)求證:平面;(2)求證:.22.(10分)2019年安慶市在大力推進(jìn)城市環(huán)境、人文精神建設(shè)的過(guò)程中,居民生活垃圾分類逐漸形成意識(shí).有關(guān)部門(mén)為宣傳垃圾分類知識(shí),面向該市市民進(jìn)行了一次“垃圾分類知識(shí)"的網(wǎng)絡(luò)問(wèn)卷調(diào)查,每位市民僅有一次參與機(jī)會(huì),通過(guò)抽樣,得到參與問(wèn)卷調(diào)查中的1000人的得分?jǐn)?shù)據(jù),其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認(rèn)為,此次問(wèn)卷調(diào)查的得分Z服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求P();(2)在(1)的條件下,有關(guān)部門(mén)為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:(i)得分不低于可獲贈(zèng)2次隨機(jī)話費(fèi),得分低于則只有1次:(ii)每次贈(zèng)送的隨機(jī)話費(fèi)和對(duì)應(yīng)概率如下:贈(zèng)送話費(fèi)(單位:元)1020概率現(xiàn)有一位市民要參加此次問(wèn)卷調(diào)查,記X(單位:元)為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話費(fèi),求X的分布列.附:,若,則,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由題意,設(shè)第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來(lái),其概率是,兩種事件又是互斥的,可得,根據(jù)求數(shù)列的通項(xiàng)知識(shí)可得選項(xiàng).【詳解】由題意,設(shè)第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來(lái),其概率是,兩種事件又是互斥的,∴,即,∴,∴數(shù)列是以為公比的等比數(shù)列,而,所以,∴當(dāng)時(shí),,故選:D.【點(diǎn)睛】本題考查幾何體中的概率問(wèn)題,關(guān)鍵在于運(yùn)用遞推的知識(shí),得出相鄰的項(xiàng)的關(guān)系,這是常用的方法,屬于難度題.2、A【解析】
列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個(gè)正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點(diǎn)睛】本題主要考查了古典概型,基本事件,屬于容易題.3、B【解析】
根據(jù)圖象分析變化過(guò)程中在關(guān)鍵位置及部分區(qū)域,即可排除錯(cuò)誤選項(xiàng),得到函數(shù)圖象,即可求解.【詳解】由題意,當(dāng)時(shí),P與A重合,則與B重合,所以,故排除C,D選項(xiàng);當(dāng)時(shí),,由圖象可知選B.故選:B【點(diǎn)睛】本題主要考查三角函數(shù)的圖像與性質(zhì),正確表示函數(shù)的表達(dá)式是解題的關(guān)鍵,屬于中檔題.4、B【解析】
根據(jù)三角函數(shù)的平移求出函數(shù)的解析式,結(jié)合三角函數(shù)的性質(zhì)進(jìn)行求解即可.【詳解】將函數(shù)的圖象向左平移個(gè)單位,得到,此時(shí)與函數(shù)的圖象重合,則,即,,當(dāng)時(shí),取得最小值為,故選:.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)的平移關(guān)系求出解析式是解決本題的關(guān)鍵.5、C【解析】
由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長(zhǎng)為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長(zhǎng)為,如圖:由底面邊長(zhǎng)可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點(diǎn)睛】本題考查了多面體的內(nèi)切球與外接球問(wèn)題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.6、D【解析】
利用輔助角公式化簡(jiǎn)函數(shù)得到,再逐項(xiàng)判斷正誤得到答案.【詳解】A選項(xiàng),函數(shù)先增后減,錯(cuò)誤B選項(xiàng),不是函數(shù)對(duì)稱軸,錯(cuò)誤C選項(xiàng),,不是對(duì)稱中心,錯(cuò)誤D選項(xiàng),圖象向左平移需個(gè)單位得到,正確故答案選D【點(diǎn)睛】本題考查了三角函數(shù)的單調(diào)性,對(duì)稱軸,對(duì)稱中心,平移,意在考查學(xué)生對(duì)于三角函數(shù)性質(zhì)的綜合應(yīng)用,其中化簡(jiǎn)三角函數(shù)是解題的關(guān)鍵.7、D【解析】
根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點(diǎn)睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運(yùn)算能力.8、D【解析】
由條件利用余弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.【詳解】對(duì)于函數(shù),令,解得,當(dāng)時(shí),函數(shù)的對(duì)稱軸為,,.故選:D.【點(diǎn)睛】本題主要考查余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.9、C【解析】
根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點(diǎn)到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點(diǎn)坐標(biāo)為,所以,則雙曲線漸近線方程為,即,不妨取右焦點(diǎn),則由點(diǎn)到直線距離公式可得,故選:C.【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì)及簡(jiǎn)單應(yīng)用,漸近線方程的求法,點(diǎn)到直線距離公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.10、A【解析】
由題可知:,且可得,構(gòu)造函數(shù)求導(dǎo),通過(guò)導(dǎo)函數(shù)求出的單調(diào)性,結(jié)合圖像得出,即得出,從而得出的最大值.【詳解】因?yàn)?,則,即整理得,令,設(shè),則,令,則,令,則,故在上單調(diào)遞增,在上單調(diào)遞減,則,因?yàn)?,,由題可知:時(shí),則,所以,所以,當(dāng)無(wú)限接近時(shí),滿足條件,所以,所以要使得故當(dāng)時(shí),可有,故,即,所以:最大值為5.故選:A.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求函數(shù)單調(diào)性、極值和最值,以及運(yùn)用構(gòu)造函數(shù)法和放縮法,同時(shí)考查轉(zhuǎn)化思想和解題能力.11、A【解析】
先化簡(jiǎn)求出,即可求得答案.【詳解】因?yàn)椋运怨蔬x:A【點(diǎn)睛】此題考查復(fù)數(shù)的基本運(yùn)算,注意計(jì)算的準(zhǔn)確度,屬于簡(jiǎn)單題目.12、D【解析】
寫(xiě)出二項(xiàng)式的通項(xiàng)公式,再分析的系數(shù)求解即可.【詳解】二項(xiàng)式展開(kāi)式的通項(xiàng)為,令,得,故項(xiàng)的系數(shù)為.故選:D【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】
可行域是如圖的菱形ABCD,代入計(jì)算,知為最小.14、1【解析】
按照個(gè)位上的9元的支付情況分類,三個(gè)數(shù)位上的錢數(shù)分步計(jì)算,相加即可.【詳解】9元的支付有兩種情況,或者,①當(dāng)9元采用方式支付時(shí),200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;②當(dāng)9元采用方式支付時(shí):200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;所以總的支付方式共有種.故答案為:1.【點(diǎn)睛】本題考查了分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,屬于中檔題.做題時(shí)注意分類做到不重不漏,分步做到步驟完整.15、1【解析】
根據(jù)均值的定義計(jì)算.【詳解】由題意,∴.故答案為:1.【點(diǎn)睛】本題考查均值的概念,屬于基礎(chǔ)題.16、答案不唯一,如【解析】
根據(jù)等差數(shù)列的性質(zhì)可得到滿足條件的數(shù)列.【詳解】由題意知,不妨設(shè),則,很明顯為遞減數(shù)列,說(shuō)明原命題是假命題.所以,答案不唯一,符合條件即可.【點(diǎn)睛】本題考查對(duì)等差數(shù)列的概念和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個(gè)遞減的數(shù)列,還需檢驗(yàn)是否滿足命題中的條件,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)見(jiàn)解析【解析】
(1)分離得到,求的最小值即可求得的取值范圍;(2)先求出,得到,利用乘變化即可證明不等式.【詳解】解:(1)設(shè),∴在上單調(diào)遞減,在上單調(diào)遞增.故.∵有解,∴.即的取值范圍為.(2),當(dāng)且僅當(dāng)時(shí)等號(hào)成立.∴,即.∵.當(dāng)且僅當(dāng),,時(shí)等號(hào)成立.∴,即成立.【點(diǎn)睛】此題考查不等式的證明,注意定值乘變化的靈活應(yīng)用,屬于較易題目.18、(1)見(jiàn)解析;(2).【解析】
(1)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,并設(shè),則,,將不等式等價(jià)轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,通過(guò)推導(dǎo)出來(lái)證得結(jié)論;(2)構(gòu)造函數(shù),對(duì)實(shí)數(shù)分、、,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最小值,再通過(guò)構(gòu)造新函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最大值,可得出的最大值.【詳解】(1),,所以,函數(shù)單調(diào)遞增,所以,當(dāng)時(shí),,此時(shí),函數(shù)單調(diào)遞減;當(dāng)時(shí),,此時(shí),函數(shù)單調(diào)遞增.要證,即證.不妨設(shè),則,,下證,即證,構(gòu)造函數(shù),,所以,函數(shù)在區(qū)間上單調(diào)遞增,,,即,即,,且函數(shù)在區(qū)間上單調(diào)遞增,所以,即,故結(jié)論成立;(2)由恒成立,得恒成立,令,則.①當(dāng)時(shí),對(duì)任意的,,函數(shù)在上單調(diào)遞增,當(dāng)時(shí),,不符合題意;②當(dāng)時(shí),;③當(dāng)時(shí),令,得,此時(shí),函數(shù)單調(diào)遞增;令,得,此時(shí),函數(shù)單調(diào)遞減...令,設(shè),則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增;當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減.所以,函數(shù)在處取得最大值,即.因此,的最大值為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)證明不等式,同時(shí)也考查了利用導(dǎo)數(shù)求代數(shù)式的最值,構(gòu)造新函數(shù)是解答的關(guān)鍵,考查推理能力,屬于難題.19、【解析】
將圓和直線化成普通方程.再根據(jù)相切,圓心到直線的距離等于半徑,列等式方程,解方程即可.【詳解】解:將圓化成普通方程為,整理得.將直線化成普通方程為.因?yàn)橄嗲?所以圓心到直線的距離等于半徑,即解得.【點(diǎn)睛】本題考查極坐標(biāo)方程與普通方程的互化,考查直線與圓的位置關(guān)系,是基礎(chǔ)題.20、(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計(jì)算出,從而求出角,根據(jù)題設(shè)和余弦定理可以求出和的值,從而求出的周長(zhǎng)為.試題解析:(1)由題設(shè)得,即.由正弦定理得.故.(2)由題設(shè)及(1)得,即.所以,故.由題設(shè)得,即.由余弦定理得,即,得.故的周長(zhǎng)為.點(diǎn)睛:在處理解三角形問(wèn)題時(shí),要注意抓住題目所給的條件,當(dāng)題設(shè)中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,有時(shí)需將角的關(guān)系轉(zhuǎn)化為邊的關(guān)系;解三角形問(wèn)題常見(jiàn)的一種考題是“已知一條邊的長(zhǎng)度和它所對(duì)的角,求面積或周長(zhǎng)的取值范圍”或者“已知一條邊的長(zhǎng)度和它所對(duì)的角,再有另外一個(gè)條件,求面積或周長(zhǎng)的值”,這類問(wèn)題的通法思路是:全部
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 合作協(xié)議合同范本大全
- 鮑溫樣丘疹病病因介紹
- 2023房屋租賃協(xié)議書(shū)樣本6篇
- 2025工廠轉(zhuǎn)讓協(xié)議書(shū)
- 2024-2025學(xué)年山東省濱州市無(wú)棣縣青島版二年級(jí)上冊(cè)期中考試數(shù)學(xué)試卷(原卷版)-A4
- 2023年天津市十二區(qū)重點(diǎn)學(xué)校高考語(yǔ)文二模試卷
- 重慶2020-2024年中考英語(yǔ)5年真題回-教師版-專題03 短文填空
- 激勵(lì)與約束對(duì)基層衛(wèi)生改革的幾點(diǎn)思考課件
- 2024-2025食醋行業(yè)發(fā)展現(xiàn)狀及未來(lái)趨勢(shì)報(bào)告
- PLC控制技術(shù)考試模擬題+參考答案
- 【MOOC】大學(xué)攝影-河南理工大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 執(zhí)紀(jì)審查業(yè)務(wù)專題培訓(xùn)
- 音樂(lè)著作權(quán)授權(quán)合同模板
- 《鐵路軌道維護(hù)》課件-鋼軌鉆孔作業(yè)
- 【MOOC】數(shù)據(jù)結(jié)構(gòu)與算法-北京大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 二零二四年光伏電站建設(shè)與運(yùn)營(yíng)管理合同2篇
- 2024版:離婚法律訴訟文書(shū)范例3篇
- 一專科一特色護(hù)理匯報(bào)
- 部編版九年級(jí)歷史下冊(cè)第15課-第二次世界大戰(zhàn)-練習(xí)題(含答案)
- 信息安全意識(shí)培訓(xùn)課件
- 道法第二單元 成長(zhǎng)的時(shí)空 單元測(cè)試 2024-2025學(xué)年統(tǒng)編版道德與法治七年級(jí)上冊(cè)
評(píng)論
0/150
提交評(píng)論