版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
裝訂線裝訂線PAGE2第1頁,共3頁陜西能源職業(yè)技術學院
《標志與符號設計》2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、圖像分割是將圖像分成不同的區(qū)域,每個區(qū)域具有相似的特征。假設要對醫(yī)學圖像進行器官分割,以下關于圖像分割方法的描述,哪一項是不正確的?()A.基于閾值的分割方法簡單直接,但對于復雜圖像效果往往不佳B.基于邊緣檢測的分割方法通過尋找圖像中的邊緣來劃分區(qū)域,但容易受到噪聲影響C.基于深度學習的語義分割方法能夠實現(xiàn)像素級別的分類,效果較好,但計算量較大D.圖像分割只適用于灰度圖像,對于彩色圖像無法進行有效的分割2、在計算機視覺的全景圖像生成任務中,將多幅局部圖像拼接成一幅全景圖像。假設要生成一個城市景觀的全景圖像,以下關于全景圖像生成方法的描述,哪一項是不正確的?()A.首先需要對局部圖像進行特征提取和匹配,找到它們之間的對應關系B.可以使用圖像變形和融合技術來消除拼接處的縫隙和色差C.全景圖像生成不受拍攝角度、光照條件和相機參數(shù)的影響,能夠完美拼接任何圖像D.基于深度學習的方法能夠自動學習全景圖像的生成規(guī)律,提高拼接效果3、在計算機視覺的場景理解任務中,需要理解整個圖像的語義信息。假設要分析一張城市街道的圖像中包含的物體和它們之間的關系,以下關于場景理解方法的描述,正確的是:()A.單獨對圖像中的每個物體進行識別和分類就能實現(xiàn)場景理解B.忽略圖像中的上下文信息和空間布局對場景理解沒有影響C.利用深度學習中的語義分割和圖模型可以更好地理解場景的結構和語義關系D.場景理解只適用于簡單的室內(nèi)場景,對于復雜的戶外場景無法處理4、在計算機視覺的表情識別任務中,判斷圖像或視頻中人物的表情。假設要開發(fā)一個用于在線教育的表情識別系統(tǒng),以下關于表情識別方法的描述,哪一項是不正確的?()A.可以通過分析面部肌肉的運動和特征點的變化來識別表情B.深度學習模型能夠學習不同表情的模式和特征,實現(xiàn)準確的表情分類C.表情識別系統(tǒng)需要考慮光照、頭部姿態(tài)和遮擋等因素的影響D.表情識別可以準確地識別出所有細微和復雜的表情,不受個體差異和文化背景的影響5、在計算機視覺的動作識別任務中,識別視頻中的人物動作。假設要識別一段舞蹈視頻中的動作,以下關于動作識別方法的描述,哪一項是不正確的?()A.可以提取視頻中的時空特征,如光流和運動軌跡,來描述動作B.基于深度學習的方法,如3D卷積神經(jīng)網(wǎng)絡,能夠直接處理視頻數(shù)據(jù),進行動作識別C.動作識別需要考慮動作的速度、幅度和節(jié)奏等特征D.動作識別只適用于簡單的、規(guī)范化的動作,對于復雜的、個性化的動作無法準確識別6、計算機視覺中的圖像配準任務是將不同時間、不同視角或不同傳感器獲取的圖像進行對齊。假設要將兩張拍攝角度不同的城市風景照片進行配準。以下關于圖像配準方法的描述,哪一項是不正確的?()A.可以基于特征點匹配的方法,找到兩張圖像中的對應點,然后計算變換矩陣B.基于灰度信息的配準方法通過比較圖像的像素值來實現(xiàn)配準C.深度學習中的自監(jiān)督學習方法可以用于圖像配準,自動學習圖像之間的對應關系D.圖像配準總是能夠達到像素級別的精確對齊,不存在任何誤差7、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設我們要分析一個視頻中物體的運動速度和方向,以下哪種光流估計算法在復雜場景下能夠提供更準確的結果?()A.Lucas-Kanade算法B.Horn-Schunck算法C.Farneback算法D.DeepFlow算法8、當利用計算機視覺進行圖像檢索任務,例如在海量圖像庫中查找相似的圖像,以下哪種圖像表示方法可能對檢索效果產(chǎn)生重要影響?()A.全局特征B.局部特征C.深度學習特征D.以上都是9、在計算機視覺的圖像檢索任務中,假設要從海量的圖像庫中快速找到與給定圖像相似的圖像。以下關于圖像特征表示的選擇,哪一項是需要重點考慮的?()A.選擇具有高維度的特征向量,包含豐富的圖像信息B.采用低維度但具有區(qū)分性的特征表示,提高檢索效率C.忽略特征的維度和區(qū)分性,隨機選擇一種特征表示D.只使用圖像的顏色特征,忽略形狀和紋理等特征10、計算機視覺在無人駕駛中的應用至關重要。假設要通過車載攝像頭識別道路上的交通標志和標線,以下關于應對復雜環(huán)境變化的策略,哪一項是不正確的?()A.利用多模態(tài)數(shù)據(jù)融合,如結合攝像頭和激光雷達的信息B.定期更新模型,適應新出現(xiàn)的交通標志和標線C.只依靠單一攝像頭的圖像信息,不考慮其他傳感器D.對不同天氣和光照條件下的數(shù)據(jù)進行增強訓練11、在計算機視覺的目標識別任務中,除了識別目標的類別,還需要確定目標的位置和大小。假設我們要在一幅復雜的圖像中識別多個不同大小的物體,以下哪種目標識別算法能夠適應不同尺度的目標?()A.基于滑動窗口的目標識別算法B.基于特征金字塔的目標識別算法C.基于注意力機制的目標識別算法D.基于模板匹配的目標識別算法12、對于視頻中的異常檢測任務,假設要在一段監(jiān)控視頻中檢測出異常事件,如闖入、打斗等。以下哪種方法可能更有助于準確檢測異常?()A.建立正常行為模型,對比檢測異常B.只關注視頻中的顯著運動區(qū)域C.隨機判斷視頻中的幀是否異常D.不進行異常檢測,直接忽略異常事件13、假設要構建一個能夠對衛(wèi)星圖像進行地物分類的計算機視覺系統(tǒng),用于國土資源調(diào)查和環(huán)境監(jiān)測。由于衛(wèi)星圖像的分辨率較高且覆蓋范圍廣,以下哪種處理方式可能是必要的?()A.圖像分塊處理B.多尺度分析C.特征選擇和降維D.以上都是14、在計算機視覺的圖像特征提取中,假設要提取對光照、旋轉和縮放具有不變性的特征。以下關于特征提取方法的描述,正確的是:()A.SIFT特征具有良好的不變性,但計算復雜度高,實時性差B.HOG特征對光照變化適應性強,但對旋轉和縮放較敏感C.LBP特征能夠快速提取,但特征表達能力有限D.沒有一種特征提取方法能夠同時滿足對光照、旋轉和縮放的不變性要求15、在計算機視覺的醫(yī)學圖像分析中,例如對腫瘤的檢測和分割。假設醫(yī)學圖像的質量較差,存在噪聲和偽影,以下哪種預處理方法可能有助于提高后續(xù)分析的準確性?()A.圖像平滑B.圖像銳化C.圖像二值化D.圖像翻轉16、計算機視覺中的圖像增強旨在改善圖像的質量和視覺效果。假設一張低對比度、有噪聲的醫(yī)學圖像需要進行增強處理,以突出病變區(qū)域并減少噪聲的影響。以下哪種圖像增強技術最為適合?()A.直方圖均衡化B.中值濾波C.高斯濾波D.銳化濾波17、計算機視覺中的場景理解是對整個圖像場景的語義和結構進行分析和理解。以下關于場景理解的描述,不準確的是()A.場景理解需要綜合考慮物體、空間關系、上下文信息等多個方面B.可以通過構建場景圖來表示場景中的實體和關系,輔助場景理解C.場景理解在智能導航、虛擬環(huán)境構建和圖像編輯等領域具有潛在的應用價值D.場景理解是一個已經(jīng)完全解決的問題,不存在任何技術難題18、假設要開發(fā)一個能夠對文物進行數(shù)字化保護和修復的計算機視覺系統(tǒng),需要對文物的破損部分進行準確識別和重建。以下哪種技術在文物修復方面可能具有應用潛力?()A.圖像修復算法B.三維重建技術C.虛擬增強現(xiàn)實技術D.以上都是19、在計算機視覺的圖像去噪任務中,假設要去除一張受到嚴重噪聲污染的圖像中的噪聲。以下關于圖像去噪方法的描述,正確的是:()A.中值濾波能夠有效地去除椒鹽噪聲,但會使圖像變得模糊B.均值濾波在去除噪聲的同時能夠很好地保留圖像的細節(jié)信息C.小波變換去噪方法計算復雜度高,不適合處理大規(guī)模圖像D.所有的圖像去噪方法都能夠完全恢復出原始的無噪圖像20、計算機視覺中,以下哪個任務通常需要對圖像中的目標進行定位和分類?()A.圖像生成B.目標檢測C.圖像超分辨率D.圖像去噪21、目標檢測是計算機視覺中的重要任務之一,旨在定位和識別圖像中的多個目標。假設我們要在城市街道的圖像中檢測行人和車輛。對于處理這種復雜場景的目標檢測任務,以下哪種技術通常能提供更準確的檢測結果?()A.基于滑動窗口的傳統(tǒng)目標檢測方法B.基于區(qū)域提議的目標檢測算法,如R-CNN系列C.基于回歸的一階段目標檢測算法,如YOLO系列D.基于聚類的目標檢測方法22、在計算機視覺的醫(yī)學影像分析中,例如對腫瘤的檢測和分割,需要高精度和可靠性。假設我們有一組磁共振成像(MRI)數(shù)據(jù),以下哪種技術能夠有效地輔助醫(yī)生進行準確的診斷和治療規(guī)劃?()A.基于傳統(tǒng)圖像處理的方法B.基于深度學習的分割網(wǎng)絡,結合多模態(tài)數(shù)據(jù)C.基于聚類和分類的方法D.基于形態(tài)學操作和閾值分割的方法23、在進行圖像增強時,我們常常需要在保持圖像細節(jié)的同時改善圖像質量。假設一張低光照條件下拍攝的圖像存在大量噪聲,以下哪種圖像增強方法可能不太適合處理這種情況?()A.直方圖均衡化B.基于小波變換的去噪方法C.中值濾波D.高斯濾波24、計算機視覺中的光流估計是計算圖像中像素的運動信息。以下關于光流估計的敘述,不正確的是()A.光流估計可以用于視頻中的運動分析、目標跟蹤和動作識別等任務B.基于深度學習的光流估計方法在精度和速度上都有了很大的提升C.光流估計只對勻速運動的物體有效,對于復雜的非勻速運動估計不準確D.光流估計的結果可以為后續(xù)的計算機視覺任務提供重要的運動線索25、在計算機視覺中,目標檢測是一項重要任務。假設要在一張包含多種物體的圖像中準確檢測出汽車的位置和類別。以下關于目標檢測算法的描述,正確的是:()A.傳統(tǒng)的基于特征提取和分類器的方法在復雜場景下檢測效果優(yōu)于深度學習方法B.深度學習中的FasterR-CNN算法通過生成候選區(qū)域和分類回歸,能夠實現(xiàn)高精度的目標檢測C.目標檢測算法只關注物體的外觀特征,不考慮物體之間的空間關系D.所有的目標檢測算法對于小目標的檢測都具有同樣出色的性能二、簡答題(本大題共4個小題,共20分)1、(本題5分)計算機視覺中如何進行公證服務中的身份驗證?2、(本題5分)解釋計算機視覺中注意力機制的作用。3、(本題5分)描述計算機視覺在虛擬現(xiàn)實中的應用。4、(本題5分)描述計算機視覺在海洋工程監(jiān)測中的應用。三、分析題(本大題共5個小題,共25分)1、(本題5分)以一個科技公司的科技峰會宣傳海報設計為例,分析其如何運用視覺元素傳達峰會主題和吸引行業(yè)人士參加。2、(本題5分)分析蘋果手表的廣告設計,從產(chǎn)品展示、功能介紹到品牌形象傳達。探討其如何吸引消費者關注,提升品牌的科技感和時尚感。3、(本題5分)分析某品牌的網(wǎng)站設計中的用戶行為分析,探討其如何通過用戶行為分析優(yōu)化網(wǎng)站設計,提升用戶體驗和品牌形象。4、(本題5分)某時尚雜志的封面設計經(jīng)常引領潮流,其通過獨特的攝影風格、個性化的字體和精
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年營業(yè)員個人計劃范文
- 有關初中英語復習計劃例文
- 一年日讀經(jīng)計劃
- 醫(yī)院2025年度工作計劃樣例
- 小學五年級語文教學新學期工作計劃
- 衛(wèi)生院后勤部2025年工作計劃
- XX年免疫規(guī)劃工作計劃
- 社區(qū)宣傳工作計劃模板范文每月工作計劃范文
- 《髖關節(jié)置換術講》課件
- 《氣候的形成》課件
- 創(chuàng)業(yè)思維-創(chuàng)造你喜愛的人生智慧樹知到期末考試答案章節(jié)答案2024年浙江旅游職業(yè)學院
- 3.2.2新能源汽車電機控制器結構及工作原理課件講解
- 八角購銷合同范本
- 更換電梯協(xié)議書范本
- 一例登革熱合并凝血功能障礙患者的個案護理20190-7
- 2024年公需課棗莊市繼續(xù)教育人社局題庫及答案18套題合集
- 義務教育信息科技課程標準(2022年版)解讀
- 廣東省佛山市2023-2024學年高一上學期期末考試語文試題
- 2024年中考作文十二大高頻熱點主題8-凡人微光 素材
- 系列包裝設計智慧樹知到期末考試答案2024年
- 醫(yī)院與醫(yī)院合作方案
評論
0/150
提交評論