商丘幼兒師范高等??茖W(xué)?!秴^(qū)塊鏈實踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
商丘幼兒師范高等??茖W(xué)?!秴^(qū)塊鏈實踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
商丘幼兒師范高等??茖W(xué)?!秴^(qū)塊鏈實踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
商丘幼兒師范高等??茖W(xué)?!秴^(qū)塊鏈實踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
商丘幼兒師范高等??茖W(xué)?!秴^(qū)塊鏈實踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁商丘幼兒師范高等??茖W(xué)?!秴^(qū)塊鏈實踐應(yīng)用》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、強化學(xué)習(xí)在機器人控制中發(fā)揮著重要作用。假設(shè)一個機器人需要學(xué)習(xí)在復(fù)雜環(huán)境中行走而不摔倒,以下關(guān)于強化學(xué)習(xí)在該場景中的描述,哪一項是不正確的?()A.機器人通過與環(huán)境的交互獲得獎勵或懲罰,從而調(diào)整自己的行為策略B.設(shè)計合理的獎勵函數(shù)對于機器人的學(xué)習(xí)效果至關(guān)重要C.強化學(xué)習(xí)可以使機器人快速適應(yīng)新的環(huán)境和任務(wù),無需重新訓(xùn)練D.機器人在學(xué)習(xí)過程中可能會經(jīng)歷多次失敗,但通過不斷嘗試最終能夠?qū)W會行走2、在人工智能的語音合成任務(wù)中,假設(shè)要生成自然流暢且富有情感的語音,以下關(guān)于模型訓(xùn)練的方法,哪一項是不正確的?()A.使用大量的語音數(shù)據(jù)進行訓(xùn)練,包括不同的口音和情感B.引入情感標(biāo)簽,讓模型學(xué)習(xí)不同情感下的語音特征C.只訓(xùn)練模型生成單一的語音風(fēng)格,以保證一致性D.結(jié)合聲學(xué)模型和語言模型,提高語音合成的質(zhì)量3、在人工智能的應(yīng)用場景中,比如醫(yī)療診斷領(lǐng)域,要開發(fā)一個能夠根據(jù)患者的癥狀、檢查結(jié)果和病史準(zhǔn)確預(yù)測疾病的系統(tǒng)。為了實現(xiàn)高精度的預(yù)測,以下哪種因素可能起到?jīng)Q定性作用?()A.數(shù)據(jù)的質(zhì)量和數(shù)量B.算法的復(fù)雜度C.計算資源的多少D.模型的訓(xùn)練時間4、在人工智能的模型訓(xùn)練中,過擬合是一個常見的問題。假設(shè)正在訓(xùn)練一個用于手寫數(shù)字識別的神經(jīng)網(wǎng)絡(luò),以下關(guān)于防止過擬合的方法,哪一項是最有效的?()A.增加訓(xùn)練數(shù)據(jù)的數(shù)量B.減少神經(jīng)網(wǎng)絡(luò)的層數(shù)C.使用更復(fù)雜的激活函數(shù)D.不進行任何處理,認為過擬合不會影響模型性能5、在人工智能的計算機視覺任務(wù)中,目標(biāo)跟蹤是一個具有挑戰(zhàn)性的問題。假設(shè)我們要跟蹤一個在人群中移動的人物,以下關(guān)于目標(biāo)跟蹤的方法,哪一項是不準(zhǔn)確的?()A.基于特征匹配的方法B.基于深度學(xué)習(xí)的方法C.基于粒子濾波的方法D.目標(biāo)跟蹤不需要考慮光照和遮擋的影響6、在人工智能的應(yīng)用中,自動駕駛是一個具有挑戰(zhàn)性的領(lǐng)域。假設(shè)一輛自動駕駛汽車需要在復(fù)雜的交通環(huán)境中做出安全的駕駛決策,需要融合多種傳感器的數(shù)據(jù)。以下關(guān)于傳感器融合的方法,哪一項是不正確的?()A.使用卡爾曼濾波將不同傳感器的數(shù)據(jù)進行融合,以獲得更準(zhǔn)確的車輛狀態(tài)估計B.簡單地將各個傳感器的數(shù)據(jù)相加,作為最終的決策依據(jù)C.基于深度學(xué)習(xí)的方法,自動學(xué)習(xí)不同傳感器數(shù)據(jù)之間的關(guān)系D.采用加權(quán)平均的方式,根據(jù)傳感器的可靠性為其分配不同的權(quán)重7、在人工智能的語音識別任務(wù)中,噪聲環(huán)境會對識別準(zhǔn)確率產(chǎn)生顯著影響。假設(shè)要提高在嘈雜環(huán)境下的語音識別性能,以下哪種方法可能最有效?()A.增加訓(xùn)練數(shù)據(jù)中的噪聲樣本B.使用更復(fù)雜的聲學(xué)模型C.優(yōu)化語音信號的預(yù)處理D.提高麥克風(fēng)的質(zhì)量8、人工智能中的深度學(xué)習(xí)模型通常需要大量的計算資源進行訓(xùn)練。假設(shè)一個研究團隊資源有限。以下關(guān)于在有限資源下訓(xùn)練模型的策略描述,哪一項是不正確的?()A.可以使用數(shù)據(jù)增強技術(shù),通過對原始數(shù)據(jù)進行隨機變換來增加數(shù)據(jù)量B.選擇輕量級的模型架構(gòu),減少參數(shù)數(shù)量和計算量C.降低模型的訓(xùn)練精度,如使用低精度數(shù)值表示,以加快訓(xùn)練速度D.為了保證模型性能,無論資源如何有限,都不能對模型進行任何簡化和壓縮9、人工智能中的模型評估指標(biāo)對于衡量模型性能至關(guān)重要。假設(shè)要評估一個二分類模型的性能,除了準(zhǔn)確率之外,以下哪種指標(biāo)在某些情況下更能反映模型的實際效果,特別是當(dāng)類別分布不均衡時?()A.召回率B.F1值C.精確率D.均方誤差10、人工智能中的模型壓縮技術(shù)用于減少模型的參數(shù)和計算量。假設(shè)要在資源受限的設(shè)備上部署一個大型的神經(jīng)網(wǎng)絡(luò)模型,以下關(guān)于模型壓縮的描述,正確的是:()A.剪枝技術(shù)通過刪除不重要的神經(jīng)元和連接來壓縮模型,不會影響模型性能B.量化技術(shù)將模型的參數(shù)從浮點數(shù)轉(zhuǎn)換為整數(shù),會導(dǎo)致較大的精度損失C.知識蒸餾將復(fù)雜模型的知識轉(zhuǎn)移到簡單模型中,但效果不如直接使用復(fù)雜模型D.模型壓縮技術(shù)會犧牲一定的模型性能,但可以顯著提高模型的部署效率11、假設(shè)在一個智能農(nóng)業(yè)的應(yīng)用中,需要利用人工智能技術(shù)來監(jiān)測農(nóng)作物的生長狀況并預(yù)測病蟲害的發(fā)生,以下哪種數(shù)據(jù)源和分析方法可能是重要的組成部分?()A.衛(wèi)星圖像和圖像分析B.傳感器數(shù)據(jù)和時間序列分析C.氣象數(shù)據(jù)和機器學(xué)習(xí)模型D.以上都是12、在人工智能的可解釋性方面,一直是一個研究熱點。假設(shè)開發(fā)了一個用于信用評估的人工智能模型,以下關(guān)于解釋模型決策的方法,哪一項是不太可行的?()A.使用特征重要性分析,確定哪些輸入特征對模型的決策影響最大B.對模型的內(nèi)部結(jié)構(gòu)和參數(shù)進行詳細解釋,讓用戶理解模型的工作原理C.通過生成示例來說明模型在不同情況下的決策邏輯D.拒絕提供任何解釋,認為模型的準(zhǔn)確性比可解釋性更重要13、人工智能在教育領(lǐng)域有著創(chuàng)新應(yīng)用。假設(shè)要開發(fā)一個自適應(yīng)學(xué)習(xí)系統(tǒng),以下關(guān)于其應(yīng)用的描述,哪一項是不準(zhǔn)確的?()A.根據(jù)學(xué)生的學(xué)習(xí)進度和表現(xiàn),動態(tài)調(diào)整學(xué)習(xí)內(nèi)容和難度B.利用情感分析技術(shù)了解學(xué)生的學(xué)習(xí)情緒,提供相應(yīng)的激勵和支持C.人工智能驅(qū)動的教育系統(tǒng)可以完全替代教師的角色,實現(xiàn)自主學(xué)習(xí)D.結(jié)合虛擬現(xiàn)實和增強現(xiàn)實技術(shù),創(chuàng)造沉浸式的學(xué)習(xí)體驗14、人工智能中的可解釋性是一個重要的研究方向。假設(shè)要解釋一個深度學(xué)習(xí)模型的決策過程和輸出結(jié)果,以下關(guān)于模型可解釋性的描述,正確的是:()A.深度學(xué)習(xí)模型的內(nèi)部運作非常復(fù)雜,無法進行任何形式的解釋B.特征重要性分析可以幫助理解模型對輸入特征的依賴程度C.可視化技術(shù)只能展示模型的結(jié)構(gòu),不能解釋模型的決策邏輯D.模型可解釋性對于實際應(yīng)用沒有太大意義,只要模型性能好就行15、在人工智能的模型訓(xùn)練中,超參數(shù)的調(diào)整是一個關(guān)鍵步驟。假設(shè)正在訓(xùn)練一個用于文本生成的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),以下關(guān)于超參數(shù)選擇的方法,哪一項是不太可取的?()A.基于經(jīng)驗和直覺,隨機選擇一組超參數(shù)進行試驗B.使用網(wǎng)格搜索或隨機搜索等方法,系統(tǒng)地嘗試不同的超參數(shù)組合C.借鑒已有的相關(guān)研究和實踐中常用的超參數(shù)設(shè)置D.利用自動超參數(shù)調(diào)整工具,如Hyperopt,根據(jù)驗證集的性能自動尋找最優(yōu)超參數(shù)二、簡答題(本大題共4個小題,共20分)1、(本題5分)解釋人工智能在審計和風(fēng)險管理中的角色。2、(本題5分)解釋人工智能在投資組合管理中的策略。3、(本題5分)談?wù)勅斯ぶ悄茉谥悄芄?yīng)鏈合作伙伴選擇中的方法。4、(本題5分)解釋人工智能在智能營銷精準(zhǔn)定位中的策略。三、操作題(本大題共5個小題,共25分)1、(本題5分)運用深度學(xué)習(xí)框架構(gòu)建一個語音合成模型,將文本轉(zhuǎn)換為自然流暢的語音,提高合成質(zhì)量。2、(本題5分)借助TensorFlow構(gòu)建一個強化學(xué)習(xí)模型,讓智能體學(xué)習(xí)在資源分配問題中優(yōu)化策略。提高資源利用效率。3、(本題5分)運用Python的PyTorch框架,搭建一個卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,對CIFAR-10數(shù)據(jù)集進行圖像分類。使用數(shù)據(jù)增強技術(shù)增加數(shù)據(jù)的多樣性,如隨機旋轉(zhuǎn)、裁剪等,訓(xùn)練模型并保存最優(yōu)模型,在測試集上進行驗證。4、(本題5分)利用Python的PyTorch庫,構(gòu)建一個多層卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,對街景圖像數(shù)據(jù)中的交通標(biāo)志進行檢測和識別。研究不同的圖像預(yù)處理方法和模型壓縮技術(shù)對性能的影響。5、(本題5分)在Python中,運用花朵授粉算法優(yōu)化一個復(fù)雜工程問題。設(shè)置算法參數(shù),展示優(yōu)化結(jié)果和收斂曲線。四、案例分析題(本大題共4個小題,共40分)1、(本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論