江蘇省五校2025屆高考仿真卷數(shù)學(xué)試題含解析_第1頁(yè)
江蘇省五校2025屆高考仿真卷數(shù)學(xué)試題含解析_第2頁(yè)
江蘇省五校2025屆高考仿真卷數(shù)學(xué)試題含解析_第3頁(yè)
江蘇省五校2025屆高考仿真卷數(shù)學(xué)試題含解析_第4頁(yè)
江蘇省五校2025屆高考仿真卷數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省五校2025屆高考仿真卷數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,正四面體的體積為,底面積為,是高的中點(diǎn),過(guò)的平面與棱、、分別交于、、,設(shè)三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,2.已知函數(shù),若有2個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.3.如果實(shí)數(shù)滿足條件,那么的最大值為()A. B. C. D.4.在區(qū)間上隨機(jī)取一個(gè)數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.115.已知等差數(shù)列的前項(xiàng)和為,,,則()A.25 B.32 C.35 D.406.已知正方體的體積為,點(diǎn),分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.7.使得的展開(kāi)式中含有常數(shù)項(xiàng)的最小的n為()A. B. C. D.8.一個(gè)幾何體的三視圖如圖所示,正視圖、側(cè)視圖和俯視圖都是由一個(gè)邊長(zhǎng)為的正方形及正方形內(nèi)一段圓弧組成,則這個(gè)幾何體的表面積是()A. B. C. D.9.設(shè)函數(shù),當(dāng)時(shí),,則()A. B. C.1 D.10.已知三棱錐中,為的中點(diǎn),平面,,,則有下列四個(gè)結(jié)論:①若為的外心,則;②若為等邊三角形,則;③當(dāng)時(shí),與平面所成的角的范圍為;④當(dāng)時(shí),為平面內(nèi)一動(dòng)點(diǎn),若OM∥平面,則在內(nèi)軌跡的長(zhǎng)度為1.其中正確的個(gè)數(shù)是().A.1 B.1 C.3 D.411.若,則的值為()A. B. C. D.12.國(guó)家統(tǒng)計(jì)局服務(wù)業(yè)調(diào)查中心和中國(guó)物流與采購(gòu)聯(lián)合會(huì)發(fā)布的2018年10月份至2019年9月份共12個(gè)月的中國(guó)制造業(yè)采購(gòu)經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯(cuò)誤的是()A.12個(gè)月的PMI值不低于50%的頻率為B.12個(gè)月的PMI值的平均值低于50%C.12個(gè)月的PMI值的眾數(shù)為49.4%D.12個(gè)月的PMI值的中位數(shù)為50.3%二、填空題:本題共4小題,每小題5分,共20分。13.下圖是一個(gè)算法的流程圖,則輸出的x的值為_(kāi)______.14.設(shè)函數(shù),若在上的最大值為,則________.15.邊長(zhǎng)為2的正方形經(jīng)裁剪后留下如圖所示的實(shí)線圍成的部分,將所留部分折成一個(gè)正四棱錐.當(dāng)該棱錐的體積取得最大值時(shí),其底面棱長(zhǎng)為_(kāi)_______.16.已知點(diǎn)是拋物線的準(zhǔn)線上一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),P為拋物線上的點(diǎn),且,若雙曲線C中心在原點(diǎn),F(xiàn)是它的一個(gè)焦點(diǎn),且過(guò)P點(diǎn),當(dāng)m取最小值時(shí),雙曲線C的離心率為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,角A,B,C的對(duì)邊分別是a,b,c,且向量與向量共線.(1)求B;(2)若,,且,求BD的長(zhǎng)度.18.(12分)在最新公布的湖南新高考方案中,“”模式要求學(xué)生在語(yǔ)數(shù)外3門全國(guó)統(tǒng)考科目之外,在歷史和物理2門科目中必選且只選1門,再?gòu)幕瘜W(xué)、生物、地理、政治4門科目中任選2門,后三科的高考成績(jī)按新的規(guī)則轉(zhuǎn)換后計(jì)入高考總分.相應(yīng)地,高校在招生時(shí)可對(duì)特定專業(yè)設(shè)置具體的選修科目要求.雙超中學(xué)高一年級(jí)有學(xué)生1200人,現(xiàn)從中隨機(jī)抽取40人進(jìn)行選科情況調(diào)查,用數(shù)字1~6分別依次代表歷史、物理、化學(xué)、生物、地理、政治6科,得到如下的統(tǒng)計(jì)表:序號(hào)選科情況序號(hào)選科情況序號(hào)選科情況序號(hào)選科情況11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)雙超中學(xué)規(guī)定:每個(gè)選修班最多編排50人且盡量滿額編班,每位老師執(zhí)教2個(gè)選修班(當(dāng)且僅當(dāng)一門科目的選課班級(jí)總數(shù)為奇數(shù)時(shí),允許這門科目的1位老師只教1個(gè)班).已知雙超中學(xué)高一年級(jí)現(xiàn)有化學(xué)、生物科目教師每科各8人,用樣本估計(jì)總體,則化學(xué)、生物兩科的教師人數(shù)是否需要調(diào)整?如果需要調(diào)整,各需增加或減少多少人?(2)請(qǐng)創(chuàng)建列聯(lián)表,運(yùn)用獨(dú)立性檢驗(yàn)的知識(shí)進(jìn)行分析,探究是否有的把握判斷學(xué)生“選擇化學(xué)科目”與“選擇物理科目”有關(guān).附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其熱門人文專業(yè)的招生簡(jiǎn)章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報(bào)名.現(xiàn)從雙超中學(xué)高一新生中隨機(jī)抽取3人,設(shè)具備高校專業(yè)報(bào)名資格的人數(shù)為,用樣本的頻率估計(jì)概率,求的分布列與期望.19.(12分)如圖1,四邊形為直角梯形,,,,,,為線段上一點(diǎn),滿足,為的中點(diǎn),現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線段上找到一點(diǎn)(端點(diǎn)除外)使得直線與平面所成角的正弦值為?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.20.(12分)某省新課改后某校為預(yù)測(cè)2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機(jī)抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計(jì)圖.(1)根據(jù)條形統(tǒng)計(jì)圖,估計(jì)本屆高三學(xué)生本科上線率.(2)已知該省甲市2020屆高考考生人數(shù)為4萬(wàn),假設(shè)以(1)中的本科上線率作為甲市每個(gè)考生本科上線的概率.(i)若從甲市隨機(jī)抽取10名高三學(xué)生,求恰有8名學(xué)生達(dá)到本科線的概率(結(jié)果精確到0.01);(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬(wàn),假設(shè)該市每個(gè)考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.可能用到的參考數(shù)據(jù):取,.21.(12分)已知等差數(shù)列的前n項(xiàng)和為,等比數(shù)列的前n項(xiàng)和為,且,,.(1)求數(shù)列與的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.22.(10分)設(shè)橢圓:的右焦點(diǎn)為,右頂點(diǎn)為,已知橢圓離心率為,過(guò)點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為3.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)過(guò)點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線斜率的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

設(shè),取與重合時(shí)的情況,計(jì)算出以及的值,利用排除法可得出正確選項(xiàng).【詳解】如圖所示,利用排除法,取與重合時(shí)的情況.不妨設(shè),延長(zhǎng)到,使得.,,,,則,由余弦定理得,,,又,,當(dāng)平面平面時(shí),,,排除B、D選項(xiàng);因?yàn)椋?,此時(shí),,當(dāng)平面平面時(shí),,,排除C選項(xiàng).故選:A.【點(diǎn)睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計(jì)算公式、排除法,考查了空間想象能力、推理能力與計(jì)算能力,屬于難題.2、C【解析】

令,可得,要使得有兩個(gè)實(shí)數(shù)解,即和有兩個(gè)交點(diǎn),結(jié)合已知,即可求得答案.【詳解】令,可得,要使得有兩個(gè)實(shí)數(shù)解,即和有兩個(gè)交點(diǎn),,令,可得,當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減.當(dāng)時(shí),,若直線和有兩個(gè)交點(diǎn),則.實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題主要考查了根據(jù)零點(diǎn)求參數(shù)范圍,解題關(guān)鍵是掌握根據(jù)零點(diǎn)個(gè)數(shù)求參數(shù)的解法和根據(jù)導(dǎo)數(shù)求單調(diào)性的步驟,考查了分析能力和計(jì)算能力,屬于中檔題.3、B【解析】

解:當(dāng)直線過(guò)點(diǎn)時(shí),最大,故選B4、D【解析】

由題意,本題符合幾何概型,只要求出區(qū)間的長(zhǎng)度以及使不等式成立的的范圍區(qū)間長(zhǎng)度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【詳解】由題意,本題符合幾何概型,區(qū)間長(zhǎng)度為6,使得成立的的范圍為,區(qū)間長(zhǎng)度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點(diǎn)睛】該題考查的是有關(guān)幾何概型與等差數(shù)列的綜合題,涉及到的知識(shí)點(diǎn)有長(zhǎng)度型幾何概型概率公式,等差數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題目.5、C【解析】

設(shè)出等差數(shù)列的首項(xiàng)和公差,即可根據(jù)題意列出兩個(gè)方程,求出通項(xiàng)公式,從而求得.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,公差為,則,解得,∴,即有.故選:C.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式的求法和應(yīng)用,涉及等差數(shù)列的前項(xiàng)和公式的應(yīng)用,屬于容易題.6、D【解析】

由題意畫出圖形,將所在的面延它們的交線展開(kāi)到與所在的面共面,可得當(dāng)時(shí)最小,設(shè)正方體的棱長(zhǎng)為,得,進(jìn)一步求出四面體的體積即可.【詳解】解:如圖,

∵點(diǎn)M,N分別在棱上,要最小,將所在的面延它們的交線展開(kāi)到與所在的面共面,三線共線時(shí),最小,

設(shè)正方體的棱長(zhǎng)為,則,∴.

取,連接,則共面,在中,設(shè)到的距離為,

設(shè)到平面的距離為,

.

故選D.【點(diǎn)睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問(wèn)題,考查計(jì)算能力,是中檔題.7、B【解析】二項(xiàng)式展開(kāi)式的通項(xiàng)公式為,若展開(kāi)式中有常數(shù)項(xiàng),則,解得,當(dāng)r取2時(shí),n的最小值為5,故選B【考點(diǎn)定位】本題考查二項(xiàng)式定理的應(yīng)用.8、C【解析】

畫出直觀圖,由球的表面積公式求解即可【詳解】這個(gè)幾何體的直觀圖如圖所示,它是由一個(gè)正方體中挖掉個(gè)球而形成的,所以它的表面積為.故選:C【點(diǎn)睛】本題考查三視圖以及幾何體的表面積的計(jì)算,考查空間想象能力和運(yùn)算求解能力.9、A【解析】

由降冪公式,兩角和的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值.【詳解】,時(shí),,,∴,由題意,∴.故選:A.【點(diǎn)睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.10、C【解析】

由線面垂直的性質(zhì),結(jié)合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質(zhì)可判斷②錯(cuò)誤;由線面角的定義和轉(zhuǎn)化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質(zhì)定理可得線面平行,可得④正確.【詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯(cuò)誤;若,設(shè)與平面所成角為可得,設(shè)到平面的距離為由可得即有,當(dāng)且僅當(dāng)取等號(hào).可得的最大值為,即的范圍為,③正確;取中點(diǎn),的中點(diǎn),連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【點(diǎn)睛】此題考查立體幾何中與點(diǎn)、線、面位置關(guān)系有關(guān)的命題的真假判斷,處理這類問(wèn)題,可以用已知的定理或性質(zhì)來(lái)證明,也可以用反證法來(lái)說(shuō)明命題的不成立.屬于一般性題目.11、C【解析】

根據(jù),再根據(jù)二項(xiàng)式的通項(xiàng)公式進(jìn)行求解即可.【詳解】因?yàn)?,所以二?xiàng)式的展開(kāi)式的通項(xiàng)公式為:,令,所以,因此有.故選:C【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了二項(xiàng)式展開(kāi)式通項(xiàng)公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力12、D【解析】

根據(jù)圖形中的信息,可得頻率、平均值的估計(jì)、眾數(shù)、中位數(shù),從而得到答案.【詳解】對(duì)A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個(gè),所以12個(gè)月的PMI值不低于50%的頻率為,故A正確;對(duì)B,由圖可以看出,PMI值的平均值低于50%,故B正確;對(duì)C,12個(gè)月的PMI值的眾數(shù)為49.4%,故C正確,;對(duì)D,12個(gè)月的PMI值的中位數(shù)為49.6%,故D錯(cuò)誤故選:D.【點(diǎn)睛】本題考查頻率、平均值的估計(jì)、眾數(shù)、中位數(shù)計(jì)算,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

利用流程圖,逐次進(jìn)行運(yùn)算,直到退出循環(huán),得到輸出值.【詳解】第一次:x=4,y=11,第二次:x=5,y=32,第三次:x=1,y=14,此時(shí)14>10×1+3,輸出x,故輸出x的值為1.故答案為:.【點(diǎn)睛】本題主要考查程序框圖的識(shí)別,“還原現(xiàn)場(chǎng)”是求解這類問(wèn)題的良方,側(cè)重考查邏輯推理的核心素養(yǎng).14、【解析】

求出函數(shù)的導(dǎo)數(shù),由在上,可得在上單調(diào)遞增,則函數(shù)最大值為,即可求出參數(shù)的值.【詳解】解:定義域?yàn)?,在上單調(diào)遞增,故在上的最大值為故答案為:【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,屬于基礎(chǔ)題.15、【解析】

根據(jù)題意,建立棱錐體積的函數(shù),利用導(dǎo)數(shù)求函數(shù)的最大值即可.【詳解】設(shè)底面邊長(zhǎng)為,則斜高為,即此四棱錐的高為,所以此四棱錐體積為,令,令,易知函數(shù)在時(shí)取得最大值.故此時(shí)底面棱長(zhǎng).故答案為:.【點(diǎn)睛】本題考查棱錐體積的求解,涉及利用導(dǎo)數(shù)研究體積最大值的問(wèn)題,屬綜合中檔題.16、【解析】

由點(diǎn)坐標(biāo)可確定拋物線方程,由此得到坐標(biāo)和準(zhǔn)線方程;過(guò)作準(zhǔn)線的垂線,垂足為,根據(jù)拋物線定義可得,可知當(dāng)直線與拋物線相切時(shí),取得最小值;利用拋物線切線的求解方法可求得點(diǎn)坐標(biāo),根據(jù)雙曲線定義得到實(shí)軸長(zhǎng),結(jié)合焦距可求得所求的離心率.【詳解】是拋物線準(zhǔn)線上的一點(diǎn)拋物線方程為,準(zhǔn)線方程為過(guò)作準(zhǔn)線的垂線,垂足為,則設(shè)直線的傾斜角為,則當(dāng)取得最小值時(shí),最小,此時(shí)直線與拋物線相切設(shè)直線的方程為,代入得:,解得:或雙曲線的實(shí)軸長(zhǎng)為,焦距為雙曲線的離心率故答案為:【點(diǎn)睛】本題考查雙曲線離心率的求解問(wèn)題,涉及到拋物線定義和標(biāo)準(zhǔn)方程的應(yīng)用、雙曲線定義的應(yīng)用;關(guān)鍵是能夠確定當(dāng)取得最小值時(shí),直線與拋物線相切,進(jìn)而根據(jù)拋物線切線方程的求解方法求得點(diǎn)坐標(biāo).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】

(1)根據(jù)共線得到,利用正弦定理化簡(jiǎn)得到答案.(2)根據(jù)余弦定理得到,,再利用余弦定理計(jì)算得到答案.【詳解】(1)∵與共線,∴.即,∴即,∵,∴,∵,∴.(2),,,在中,由余弦定理得:,∴.則或(舍去).∴,∵∴.在中,由余弦定理得:,∴.【點(diǎn)睛】本題考查了向量共線,正弦定理,余弦定理,意在考查學(xué)生的綜合應(yīng)用能力.18、(1)不需調(diào)整(2)列聯(lián)表見(jiàn)解析;有的把握判斷學(xué)生“選擇化學(xué)科目”與“選擇物理科目”有關(guān)(3)詳見(jiàn)解析【解析】

(1)可估計(jì)高一年級(jí)選修相應(yīng)科目的人數(shù)分別為120,2,推理得對(duì)應(yīng)開(kāi)設(shè)選修班的數(shù)目分別為15,1.推理知生物科目需要減少4名教師,化學(xué)科目不需要調(diào)整.(2)根據(jù)列聯(lián)表計(jì)算觀測(cè)值,根據(jù)臨界值表可得結(jié)論.(3)經(jīng)統(tǒng)計(jì),樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數(shù)為12,頻率為.用頻率估計(jì)概率,則,根據(jù)二項(xiàng)分布概率公式可得分布列和數(shù)學(xué)期望.【詳解】(1)經(jīng)統(tǒng)計(jì)可知,樣本40人中,選修化學(xué)、生物的人數(shù)分別為24,11,則可估計(jì)高一年級(jí)選修相應(yīng)科目的人數(shù)分別為120,2.根據(jù)每個(gè)選修班最多編排50人,且盡量滿額編班,得對(duì)應(yīng)開(kāi)設(shè)選修班的數(shù)目分別為15,1.現(xiàn)有化學(xué)、生物科目教師每科各8人,根據(jù)每位教師執(zhí)教2個(gè)選修班,當(dāng)且僅當(dāng)一門科目的選課班級(jí)總數(shù)為奇數(shù)時(shí),允許這門科目的一位教師執(zhí)教一個(gè)班的條件,知生物科目需要減少4名教師,化學(xué)科目不需要調(diào)整.(2)根據(jù)表格中的數(shù)據(jù)進(jìn)行統(tǒng)計(jì)后,制作列聯(lián)表如下:選物理不選物理合計(jì)選化學(xué)19524不選化學(xué)61016合計(jì)251540則,有的把握判斷學(xué)生”選擇化學(xué)科目”與“選擇物理科目”有關(guān).(3)經(jīng)統(tǒng)計(jì),樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數(shù)為12,頻率為.用頻率估計(jì)概率,則,分布列如下:01230.3430.4410.1890.021數(shù)學(xué)期望為.【點(diǎn)睛】本題主要考查了離散型隨機(jī)變量的期望與方差,考查獨(dú)立性檢驗(yàn),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.19、(1)證明見(jiàn)解析;(2)存在點(diǎn)是線段的中點(diǎn),使得直線與平面所成角的正弦值為.【解析】

(1)在直角梯形中,根據(jù),,得為等邊三角形,再由余弦定理求得,滿足,得到,再根據(jù)平面平面,利用面面垂直的性質(zhì)定理證明.(2)建立空間直角坐標(biāo)系:假設(shè)在上存在一點(diǎn)使直線與平面所成角的正弦值為,且,,求得平面的一個(gè)法向量,再利用線面角公式求解.【詳解】(1)證明:在直角梯形中,,,因此為等邊三角形,從而,又,由余弦定理得:,∴,即,且折疊后與位置關(guān)系不變,又∵平面平面,且平面平面.∴平面,∵平面,∴平面平面.(2)∵為等邊三角形,為的中點(diǎn),∴,又∵平面平面,且平面平面,∴平面,取的中點(diǎn),連結(jié),則,從而,以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系:則,,則,假設(shè)在上存在一點(diǎn)使直線與平面所成角的正弦值為,且,,∵,∴,故,∴,又,該平面的法向量為,,令得,∴,解得或(舍),綜上可知,存在點(diǎn)是線段的中點(diǎn),使得直線與平面所成角的正弦值為.【點(diǎn)睛】本題主要考查面面垂直的性質(zhì)定理和向量法研究線面角問(wèn)題,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.20、(1)60%;(2)(i)0.12(ii)【解析】

(1)利用上線人數(shù)除以總?cè)藬?shù)求解;(2)(i)利用二項(xiàng)分布求解;(ii)甲、乙兩市上線人數(shù)分別記為X,Y,得,.,利用期望公式列不等式求解【詳解】(1)估計(jì)本科上線率為.(2)(i)記“恰有8名學(xué)生達(dá)到本科線”為事件

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論