版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
臺(tái)州市重點(diǎn)中學(xué)2025屆高三第二次模擬考試數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)分別是雙線的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(diǎn)(位于軸右側(cè)),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.2.如圖,在三棱錐中,平面,,現(xiàn)從該三棱錐的個(gè)表面中任選個(gè),則選取的個(gè)表面互相垂直的概率為()A. B. C. D.3.已知實(shí)數(shù)、滿足約束條件,則的最大值為()A. B. C. D.4.已知復(fù)數(shù),若,則的值為()A.1 B. C. D.5.已知集合,,,則集合()A. B. C. D.6.設(shè)是虛數(shù)單位,則“復(fù)數(shù)為純虛數(shù)”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件7.若不相等的非零實(shí)數(shù),,成等差數(shù)列,且,,成等比數(shù)列,則()A. B. C.2 D.8.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.9.已知點(diǎn)P不在直線l、m上,則“過(guò)點(diǎn)P可以作無(wú)數(shù)個(gè)平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要11.設(shè),則,則()A. B. C. D.12.已知為拋物線的準(zhǔn)線,拋物線上的點(diǎn)到的距離為,點(diǎn)的坐標(biāo)為,則的最小值是()A. B.4 C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.若橢圓:的一個(gè)焦點(diǎn)坐標(biāo)為,則的長(zhǎng)軸長(zhǎng)為_(kāi)______.14.高三(1)班共有56人,學(xué)號(hào)依次為1,2,3,…,56,現(xiàn)用系統(tǒng)抽樣的辦法抽取一個(gè)容量為4的樣本,已知學(xué)號(hào)為6,34,48的同學(xué)在樣本中,那么還有一個(gè)同學(xué)的學(xué)號(hào)應(yīng)為.15.曲線在處的切線方程是_________.16.某校名學(xué)生參加軍事冬令營(yíng)活動(dòng),活動(dòng)期間各自扮演一名角色進(jìn)行分組游戲,角色按級(jí)別從小到大共種,分別為士兵、排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級(jí)別連續(xù)的個(gè)不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進(jìn)行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知矩陣,求矩陣的特征值及其相應(yīng)的特征向量.18.(12分)已知函數(shù).(1)設(shè),求函數(shù)的單調(diào)區(qū)間,并證明函數(shù)有唯一零點(diǎn).(2)若函數(shù)在區(qū)間上不單調(diào),證明:.19.(12分)設(shè)數(shù)列是等比數(shù)列,,已知,(1)求數(shù)列的首項(xiàng)和公比;(2)求數(shù)列的通項(xiàng)公式.20.(12分)如圖,在中,點(diǎn)在上,,,.(1)求的值;(2)若,求的長(zhǎng).21.(12分)已知函數(shù),.(1)當(dāng)時(shí),求不等式的解集;(2)若函數(shù)的圖象與軸恰好圍成一個(gè)直角三角形,求的值.22.(10分)設(shè)首項(xiàng)為1的正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列的前n項(xiàng)和為T(mén)n,且,其中p為常數(shù).(1)求p的值;(2)求證:數(shù)列{an}為等比數(shù)列;(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“x=1,且y=2”.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因?yàn)樗倪呅螢榱庑?,,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B【點(diǎn)睛】此題考查的是求雙曲線的漸近線方程,利用了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.2、A【解析】
根據(jù)線面垂直得面面垂直,已知平面,由,可得平面,這樣可確定垂直平面的對(duì)數(shù),再求出四個(gè)面中任選2個(gè)的方法數(shù),從而可計(jì)算概率.【詳解】由已知平面,,可得,從該三棱錐的個(gè)面中任選個(gè)面共有種不同的選法,而選取的個(gè)表面互相垂直的有種情況,故所求事件的概率為.故選:A.【點(diǎn)睛】本題考查古典概型概率,解題關(guān)鍵是求出基本事件的個(gè)數(shù).3、C【解析】
作出不等式組表示的平面區(qū)域,作出目標(biāo)函數(shù)對(duì)應(yīng)的直線,結(jié)合圖象知當(dāng)直線過(guò)點(diǎn)時(shí),取得最大值.【詳解】解:作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,如下圖表示:當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)點(diǎn)時(shí),取得最大值,最大值為.故選:C.【點(diǎn)睛】本題主要考查線性規(guī)劃等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí),屬于中檔題.4、D【解析】由復(fù)數(shù)模的定義可得:,求解關(guān)于實(shí)數(shù)的方程可得:.本題選擇D選項(xiàng).5、D【解析】
根據(jù)集合的混合運(yùn)算,即可容易求得結(jié)果.【詳解】,故可得.故選:D.【點(diǎn)睛】本題考查集合的混合運(yùn)算,屬基礎(chǔ)題.6、D【解析】
結(jié)合純虛數(shù)的概念,可得,再結(jié)合充分條件和必要條件的定義即可判定選項(xiàng).【詳解】若復(fù)數(shù)為純虛數(shù),則,所以,若,不妨設(shè),此時(shí)復(fù)數(shù),不是純虛數(shù),所以“復(fù)數(shù)為純虛數(shù)”是“”的充分不必要條件.故選:D【點(diǎn)睛】本題考查充分條件和必要條件,考查了純虛數(shù)的概念,理解充分必要條件的邏輯關(guān)系是解題的關(guān)鍵,屬于基礎(chǔ)題.7、A【解析】
由題意,可得,,消去得,可得,繼而得到,代入即得解【詳解】由,,成等差數(shù)列,所以,又,,成等比數(shù)列,所以,消去得,所以,解得或,因?yàn)?,,是不相等的非零?shí)數(shù),所以,此時(shí),所以.故選:A【點(diǎn)睛】本題考查了等差等比數(shù)列的綜合應(yīng)用,考查了學(xué)生概念理解,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.8、B【解析】
首先求得兩曲線的交點(diǎn)坐標(biāo),據(jù)此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯(lián)立方程:可得:,,結(jié)合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項(xiàng).【點(diǎn)睛】本題主要考查定積分的概念與計(jì)算,屬于中等題.9、C【解析】
根據(jù)直線和平面平行的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】點(diǎn)不在直線、上,若直線、互相平行,則過(guò)點(diǎn)可以作無(wú)數(shù)個(gè)平面,使得直線、都與這些平面平行,即必要性成立,若過(guò)點(diǎn)可以作無(wú)數(shù)個(gè)平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過(guò)點(diǎn)只能作一個(gè)平面同時(shí)和兩條直線平行,則與條件矛盾,即充分性成立則“過(guò)點(diǎn)可以作無(wú)數(shù)個(gè)平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合空間直線和平面平行的性質(zhì)是解決本題的關(guān)鍵.10、B【解析】
由線面關(guān)系可知,不能確定與平面的關(guān)系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當(dāng)時(shí),存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【點(diǎn)睛】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.11、A【解析】
根據(jù)換底公式可得,再化簡(jiǎn),比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點(diǎn)睛】本題考查換底公式和對(duì)數(shù)的運(yùn)算,屬于中檔題.12、B【解析】
設(shè)拋物線焦點(diǎn)為,由題意利用拋物線的定義可得,當(dāng)共線時(shí),取得最小值,由此求得答案.【詳解】解:拋物線焦點(diǎn),準(zhǔn)線,過(guò)作交于點(diǎn),連接由拋物線定義,
,
當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),取“=”號(hào),∴的最小值為.
故選:B.【點(diǎn)睛】本題主要考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由焦點(diǎn)坐標(biāo)得從而可求出,繼而得到橢圓的方程,即可求出長(zhǎng)軸長(zhǎng).【詳解】解:因?yàn)橐粋€(gè)焦點(diǎn)坐標(biāo)為,則,即,解得或由表示的是橢圓,則,所以,則橢圓方程為所以.故答案為:.【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程,考查了橢圓的幾何意義.本題的易錯(cuò)點(diǎn)是忽略,從而未對(duì)的兩個(gè)值進(jìn)行取舍.14、20【解析】
根據(jù)系統(tǒng)抽樣的定義將56人按順序分成4組,每組14人,則1至14號(hào)為第一組,15至28號(hào)為第二組,29號(hào)至42號(hào)為第三組,43號(hào)至56號(hào)為第四組.而學(xué)號(hào)6,34,48分別是第一、三、四組的學(xué)號(hào),所以還有一個(gè)同學(xué)應(yīng)該是15+6-1=20號(hào),故答案為20.15、【解析】
利用導(dǎo)數(shù)的運(yùn)算法則求出導(dǎo)函數(shù),再利用導(dǎo)數(shù)的幾何意義即可求解.【詳解】求導(dǎo)得,所以,所以切線方程為故答案為:【點(diǎn)睛】本題考查了基本初等函數(shù)的導(dǎo)數(shù)、導(dǎo)數(shù)的運(yùn)算法則以及導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.16、【解析】
對(duì)新加入的學(xué)生所扮演的角色進(jìn)行分類討論,分析各種情況下個(gè)學(xué)生所扮演的角色的分組,綜合可得出結(jié)論.【詳解】依題意,名學(xué)生分成組,則一定是個(gè)人組和個(gè)人組.①若新加入的學(xué)生是士兵,則可以將這個(gè)人分組如下;名士兵;士兵、排長(zhǎng)、連長(zhǎng)各名;營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)各名;師長(zhǎng)、軍長(zhǎng)、司令各名;名司令.所以新加入的學(xué)生可以是士兵,由對(duì)稱性可知也可以是司令;②若新加入的學(xué)生是排長(zhǎng),則可以將這個(gè)人分組如下:名士兵;連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)各名;旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)各名;名司令;名排長(zhǎng).所以新加入的學(xué)生可以是排長(zhǎng),由對(duì)稱性可知也可以是軍長(zhǎng);③若新加入的學(xué)生是連長(zhǎng),則可以將這個(gè)人分組如下:名士兵;士兵、排長(zhǎng)、連長(zhǎng)各名;連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)各名;旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)各名;名司令.所以新加入的學(xué)生可以是連長(zhǎng),由對(duì)稱性可知也可以是師長(zhǎng);④若新加入的學(xué)生是營(yíng)長(zhǎng),則可以將這個(gè)人分組如下:名士兵;排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)各名;營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)各名;師長(zhǎng)、軍長(zhǎng)、司令各名;名司令.所以新加入的學(xué)生可以是營(yíng)長(zhǎng),由對(duì)稱性可知也可以是旅長(zhǎng);⑤若新加入的學(xué)生是團(tuán)長(zhǎng),則可以將這個(gè)人分組如下:名士兵;排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)各名;旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)各名;名司令;名團(tuán)長(zhǎng).所以新加入的學(xué)生可以是團(tuán)長(zhǎng).綜上所述,新加入學(xué)生可以扮演種角色.故答案為:.【點(diǎn)睛】本題考查分類計(jì)數(shù)原理的應(yīng)用,解答的關(guān)鍵就是對(duì)新加入的學(xué)生所扮演的角色進(jìn)行分類討論,屬于中等題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、矩陣屬于特征值的一個(gè)特征向量為,矩陣屬于特征值的一個(gè)特征向量為【解析】
先由矩陣特征值的定義列出特征多項(xiàng)式,令解方程可得特征值,再由特征值列出方程組,即可求得相應(yīng)的特征向量.【詳解】由題意,矩陣的特征多項(xiàng)式為,令,解得,,將代入二元一次方程組,解得,所以矩陣屬于特征值的一個(gè)特征向量為;同理,矩陣屬于特征值的一個(gè)特征向量為v【點(diǎn)睛】本題主要考查了矩陣的特征值與特征向量的計(jì)算,其中解答中熟記矩陣的特征值和特征向量的計(jì)算方法是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.18、(1)為增區(qū)間;為減區(qū)間.見(jiàn)解析(2)見(jiàn)解析【解析】
(1)先求得的定義域,然后利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,結(jié)合零點(diǎn)存在性定理判斷出有唯一零點(diǎn).(2)求得的導(dǎo)函數(shù),結(jié)合在區(qū)間上不單調(diào),證得,通過(guò)證明,證得成立.【詳解】(1)∵函數(shù)的定義域?yàn)?,由,解得為增區(qū)間;由解得為減區(qū)間.下面證明函數(shù)只有一個(gè)零點(diǎn):∵,所以函數(shù)在區(qū)間內(nèi)有零點(diǎn),∵,函數(shù)在區(qū)間上沒(méi)有零點(diǎn),故函數(shù)只有一個(gè)零點(diǎn).(2)證明:函數(shù),則當(dāng)時(shí),,不符合題意;當(dāng)時(shí),令,則,所以在上單調(diào)增函數(shù),而,又∵區(qū)間上不單調(diào),所以存在,使得在上有一個(gè)零點(diǎn),即,所以,且,即兩邊取自然對(duì)數(shù),得即,要證,即證,先證明:,令,則∴在上單調(diào)遞增,即,∴①在①中令,∴令∴,即即,∴.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和零點(diǎn),考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.19、(1)(2)【解析】
本題主要考查了等比數(shù)列的通項(xiàng)公式的求解,數(shù)列求和的錯(cuò)位相減求和是數(shù)列求和中的重點(diǎn)與難點(diǎn),要注意掌握.(1)設(shè)等比數(shù)列{an}的公比為q,則q+q2=6,解方程可求q(2)由(1)可求an=a1?qn-1=2n-1,結(jié)合數(shù)列的特點(diǎn),考慮利用錯(cuò)位相減可求數(shù)列的和解:(1)(2),兩式相減:20、(1);(2).【解析】
(1)由兩角差的正弦公式計(jì)算;(2)由正弦定理求得,再由余弦定理求得.【詳解】(1)因?yàn)?,所?因?yàn)?,所以,所?(2)在中,由,得,在中,由余弦定理可得,所以.【點(diǎn)睛】本題考查兩角差的正弦公式,考查正弦定理和余弦定理,屬于中檔題.21、(1)(2)【解析】
(1)當(dāng)時(shí),,由可得,(所以,解得,所以不等式的解集為.(2)由題可得,因?yàn)楹瘮?shù)的圖象與軸恰好圍成一個(gè)直角三角形,所以,解得,當(dāng)時(shí),,函數(shù)的圖象與軸沒(méi)有交點(diǎn),不符合題意;當(dāng)時(shí),,函數(shù)的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 生態(tài)農(nóng)業(yè)園租賃合同模板
- 水產(chǎn)養(yǎng)殖銷售代表聘用合同范本
- 美容院防水施工合同
- 兒童攝影相機(jī)租賃協(xié)議
- 股份質(zhì)押合同三篇
- 高速公路路面養(yǎng)護(hù)承包合同三篇
- 車輛租賃公司和員工安全協(xié)議書(shū)(2篇)
- 挖機(jī)在工地干活合同范本
- 公共機(jī)構(gòu)合同能源管理的意義和作用
- 工商銀行解除貸款合同流程
- 案例分析 長(zhǎng)沙望城區(qū)自建房倒塌事23課件講解
- 管道巡護(hù)管理
- 第17課《貓》課件+【知識(shí)精研】統(tǒng)編版語(yǔ)文七年級(jí)上冊(cè)
- 統(tǒng)計(jì)信號(hào)分析知到智慧樹(shù)章節(jié)測(cè)試課后答案2024年秋哈爾濱工程大學(xué)
- 《程序化成功案例》課件
- 2025年中考道德與法治一輪教材復(fù)習(xí)-九年級(jí)下冊(cè)-第一單元 我們共同的世界
- 【MOOC】中國(guó)電影經(jīng)典影片鑒賞-北京師范大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 陜西省西安市長(zhǎng)安區(qū)2024-2025學(xué)年八年級(jí)上學(xué)期期中地理試卷
- 企業(yè)破產(chǎn)律師服務(wù)協(xié)議
- 【MOOC】遺傳學(xué)-中國(guó)農(nóng)業(yè)大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 預(yù)防火災(zāi)消防安全培訓(xùn)
評(píng)論
0/150
提交評(píng)論