上海行健職業(yè)學(xué)院《人工智能基礎(chǔ)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
上海行健職業(yè)學(xué)院《人工智能基礎(chǔ)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
上海行健職業(yè)學(xué)院《人工智能基礎(chǔ)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁,共1頁上海行健職業(yè)學(xué)院

《人工智能基礎(chǔ)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的文本分類任務(wù)中,假設(shè)要對(duì)大量的新聞文章進(jìn)行分類,如政治、經(jīng)濟(jì)、體育等。以下關(guān)于特征提取的方法,哪一項(xiàng)是最常用的?()A.使用詞袋模型,將文本表示為詞的頻率向量B.直接將原始文本作為輸入,不進(jìn)行任何特征提取C.運(yùn)用句法分析,提取句子的結(jié)構(gòu)特征D.僅考慮文本的標(biāo)題,忽略正文內(nèi)容2、人工智能在金融領(lǐng)域的風(fēng)險(xiǎn)評(píng)估和欺詐檢測(cè)中發(fā)揮著重要作用。假設(shè)要構(gòu)建一個(gè)系統(tǒng)來檢測(cè)信用卡交易中的欺詐行為,需要實(shí)時(shí)分析交易數(shù)據(jù)和用戶行為模式。以下哪種技術(shù)或方法在處理這種實(shí)時(shí)、動(dòng)態(tài)的數(shù)據(jù)時(shí)最為有效?()A.實(shí)時(shí)數(shù)據(jù)分析和監(jiān)控B.離線批量處理和分析C.基于經(jīng)驗(yàn)的規(guī)則判斷D.隨機(jī)抽樣檢查3、人工智能中的預(yù)訓(xùn)練語言模型,如GPT-3,引起了廣泛關(guān)注。假設(shè)要利用預(yù)訓(xùn)練語言模型進(jìn)行特定任務(wù)的微調(diào)。以下關(guān)于預(yù)訓(xùn)練語言模型的描述,哪一項(xiàng)是不正確的?()A.預(yù)訓(xùn)練語言模型在大規(guī)模通用語料上學(xué)習(xí)了語言的通用知識(shí)和模式B.微調(diào)時(shí)可以使用少量的特定任務(wù)數(shù)據(jù),快速適應(yīng)新的任務(wù)C.預(yù)訓(xùn)練語言模型的參數(shù)規(guī)模越大,性能一定越好D.可以根據(jù)具體需求對(duì)預(yù)訓(xùn)練語言模型的輸出進(jìn)行進(jìn)一步的處理和優(yōu)化4、在人工智能的圖像識(shí)別任務(wù)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用。假設(shè)要設(shè)計(jì)一個(gè)用于識(shí)別手寫數(shù)字的卷積神經(jīng)網(wǎng)絡(luò),以下哪個(gè)因素對(duì)于提高識(shí)別準(zhǔn)確率至關(guān)重要?()A.增加卷積層的數(shù)量B.減少池化層的大小C.選擇合適的激活函數(shù)D.增加全連接層的神經(jīng)元數(shù)量5、在人工智能的研究中,可解釋性是一個(gè)重要的問題。假設(shè)開發(fā)了一個(gè)用于醫(yī)療診斷的人工智能模型,以下關(guān)于模型可解釋性的描述,哪一項(xiàng)是不正確的?()A.解釋模型的決策過程和依據(jù),有助于提高醫(yī)生對(duì)診斷結(jié)果的信任度B.特征重要性分析可以幫助理解哪些輸入特征對(duì)診斷結(jié)果影響較大C.深度學(xué)習(xí)模型由于其復(fù)雜性,無法進(jìn)行任何形式的解釋D.開發(fā)具有可解釋性的人工智能模型對(duì)于醫(yī)療等關(guān)鍵領(lǐng)域至關(guān)重要6、人工智能中的聯(lián)邦學(xué)習(xí)可以在保護(hù)數(shù)據(jù)隱私的前提下進(jìn)行模型訓(xùn)練。假設(shè)多個(gè)機(jī)構(gòu)想要合作訓(xùn)練一個(gè)模型,但又不想共享原始數(shù)據(jù),以下哪個(gè)技術(shù)是聯(lián)邦學(xué)習(xí)的核心?()A.加密通信B.模型參數(shù)的加密共享和聚合C.分布式計(jì)算框架D.數(shù)據(jù)脫敏7、人工智能中的遷移學(xué)習(xí)可以利用已有的預(yù)訓(xùn)練模型來加速新任務(wù)的學(xué)習(xí)。假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型遷移到醫(yī)學(xué)圖像分析任務(wù)中,以下關(guān)于遷移學(xué)習(xí)的步驟,哪一項(xiàng)是不準(zhǔn)確的?()A.凍結(jié)預(yù)訓(xùn)練模型的部分層,只訓(xùn)練特定任務(wù)相關(guān)的層B.直接在新的醫(yī)學(xué)圖像數(shù)據(jù)集上微調(diào)整個(gè)預(yù)訓(xùn)練模型C.對(duì)新的數(shù)據(jù)集進(jìn)行數(shù)據(jù)增強(qiáng),以增加數(shù)據(jù)的多樣性D.分析預(yù)訓(xùn)練模型和新任務(wù)之間的差異,選擇合適的遷移策略8、在人工智能的強(qiáng)化學(xué)習(xí)中,假設(shè)智能體在探索環(huán)境時(shí)面臨高風(fēng)險(xiǎn)的動(dòng)作選擇,以下哪種策略能夠平衡探索和利用,以實(shí)現(xiàn)更好的學(xué)習(xí)效果?()A.ε-貪心策略,以一定概率隨機(jī)選擇動(dòng)作B.始終選擇最優(yōu)動(dòng)作,不進(jìn)行探索C.隨機(jī)選擇動(dòng)作,不考慮之前的經(jīng)驗(yàn)D.只在初始階段進(jìn)行探索,之后完全利用9、人工智能中的自動(dòng)推理技術(shù)旨在讓計(jì)算機(jī)能夠自動(dòng)進(jìn)行邏輯推理和證明。假設(shè)要開發(fā)一個(gè)能夠自動(dòng)解決數(shù)學(xué)定理證明問題的系統(tǒng),以下關(guān)于自動(dòng)推理的描述,正確的是:()A.現(xiàn)有的自動(dòng)推理技術(shù)可以輕松解決所有復(fù)雜的數(shù)學(xué)定理證明問題B.自動(dòng)推理系統(tǒng)只需要基于固定的推理規(guī)則,不需要學(xué)習(xí)和適應(yīng)新的推理模式C.結(jié)合機(jī)器學(xué)習(xí)和符號(hào)推理的方法,可以提高自動(dòng)推理系統(tǒng)的能力和靈活性D.自動(dòng)推理在人工智能中的應(yīng)用范圍非常有限,沒有實(shí)際價(jià)值10、人工智能中的“膠囊網(wǎng)絡(luò)(CapsuleNetwork)”的主要優(yōu)勢(shì)是?()A.對(duì)姿態(tài)和變形的魯棒性B.減少參數(shù)數(shù)量C.提高訓(xùn)練速度D.增強(qiáng)可解釋性11、人工智能在教育領(lǐng)域有潛在的應(yīng)用,例如個(gè)性化學(xué)習(xí)系統(tǒng)。假設(shè)要為學(xué)生提供個(gè)性化的學(xué)習(xí)路徑,以下哪種數(shù)據(jù)對(duì)于系統(tǒng)的設(shè)計(jì)最為關(guān)鍵?()A.學(xué)生的考試成績(jī)B.學(xué)生的學(xué)習(xí)時(shí)間C.學(xué)生的學(xué)習(xí)風(fēng)格和偏好D.學(xué)校的課程設(shè)置12、在人工智能的語音合成任務(wù)中,要生成自然流暢且富有情感的語音。假設(shè)需要模擬不同人的聲音特點(diǎn)和情感表達(dá),以下哪種技術(shù)或方法是關(guān)鍵的?()A.基于深度學(xué)習(xí)的語音合成模型,學(xué)習(xí)語音特征B.使用固定的語音模板,進(jìn)行簡(jiǎn)單組合C.隨機(jī)生成語音的音調(diào)和語速D.不考慮情感因素,只生成清晰的語音13、當(dāng)利用人工智能進(jìn)行輿情監(jiān)測(cè)和分析,及時(shí)了解公眾對(duì)某一事件或話題的看法和情緒傾向,以下哪種數(shù)據(jù)來源和分析手段可能是有效的?()A.社交媒體數(shù)據(jù)和情感分析B.新聞評(píng)論數(shù)據(jù)和主題建模C.網(wǎng)絡(luò)搜索數(shù)據(jù)和趨勢(shì)預(yù)測(cè)D.以上都是14、在人工智能的優(yōu)化算法中,隨機(jī)梯度下降(SGD)是常用的方法之一。假設(shè)在訓(xùn)練一個(gè)深度學(xué)習(xí)模型時(shí),發(fā)現(xiàn)模型收斂速度較慢。以下哪種改進(jìn)的SGD變種或優(yōu)化策略能夠加快模型的收斂速度,同時(shí)避免陷入局部最優(yōu)解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結(jié)合使用15、在人工智能的發(fā)展歷程中,深度學(xué)習(xí)技術(shù)的出現(xiàn)帶來了重大突破。假設(shè)我們正在研究圖像識(shí)別任務(wù),需要對(duì)大量的圖像數(shù)據(jù)進(jìn)行訓(xùn)練,以識(shí)別不同的物體和場(chǎng)景。深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在處理圖像數(shù)據(jù)時(shí)具有獨(dú)特的優(yōu)勢(shì)。那么,以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)的描述,哪一項(xiàng)是不正確的?()A.能夠自動(dòng)提取圖像的特征,減少了人工特征工程的工作量B.可以處理任意大小的圖像輸入,無需對(duì)圖像進(jìn)行預(yù)處理C.其訓(xùn)練過程需要大量的計(jì)算資源和時(shí)間D.對(duì)于復(fù)雜的圖像分類任務(wù),準(zhǔn)確率通常高于傳統(tǒng)機(jī)器學(xué)習(xí)算法16、人工智能中的深度學(xué)習(xí)模型通常需要大量的計(jì)算資源進(jìn)行訓(xùn)練。假設(shè)一個(gè)研究團(tuán)隊(duì)資源有限。以下關(guān)于在有限資源下訓(xùn)練模型的策略描述,哪一項(xiàng)是不正確的?()A.可以使用數(shù)據(jù)增強(qiáng)技術(shù),通過對(duì)原始數(shù)據(jù)進(jìn)行隨機(jī)變換來增加數(shù)據(jù)量B.選擇輕量級(jí)的模型架構(gòu),減少參數(shù)數(shù)量和計(jì)算量C.降低模型的訓(xùn)練精度,如使用低精度數(shù)值表示,以加快訓(xùn)練速度D.為了保證模型性能,無論資源如何有限,都不能對(duì)模型進(jìn)行任何簡(jiǎn)化和壓縮17、在人工智能的發(fā)展中,倫理和社會(huì)問題日益受到關(guān)注。例如,自動(dòng)駕駛汽車在面臨不可避免的事故時(shí),需要做出決策以最小化傷亡。這種情況下,以下哪種觀點(diǎn)是需要重點(diǎn)考慮的?()A.優(yōu)先保護(hù)乘客的生命安全B.隨機(jī)選擇保護(hù)對(duì)象C.按照預(yù)設(shè)的規(guī)則進(jìn)行決策,不考慮具體情況D.綜合考慮多種因素,如法律、道德和社會(huì)影響18、生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種新興的人工智能技術(shù)。假設(shè)要使用GAN生成逼真的圖像。以下關(guān)于生成對(duì)抗網(wǎng)絡(luò)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.GAN由生成器和判別器組成,兩者通過對(duì)抗訓(xùn)練不斷優(yōu)化B.生成器負(fù)責(zé)生成假樣本,判別器負(fù)責(zé)判斷樣本的真假C.GAN可以生成具有高度創(chuàng)造性和多樣性的新數(shù)據(jù)D.GAN的訓(xùn)練過程非常穩(wěn)定,不會(huì)出現(xiàn)模式崩潰等問題19、人工智能在社交媒體的內(nèi)容管理中發(fā)揮作用。假設(shè)一個(gè)社交媒體平臺(tái)要利用人工智能過濾不良信息,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.基于自然語言處理技術(shù)和機(jī)器學(xué)習(xí)算法,識(shí)別不良內(nèi)容B.不斷學(xué)習(xí)和更新不良信息的模式,提高過濾的準(zhǔn)確性C.人工智能過濾系統(tǒng)能夠完全杜絕不良信息的出現(xiàn),無需人工監(jiān)督D.平衡過濾的嚴(yán)格程度和用戶體驗(yàn),避免誤判正常內(nèi)容20、假設(shè)要構(gòu)建一個(gè)能夠自主學(xué)習(xí)并改進(jìn)其性能的人工智能圖像識(shí)別系統(tǒng),用于識(shí)別不同種類的動(dòng)物。在訓(xùn)練過程中,需要處理大量的圖像數(shù)據(jù),以下哪種機(jī)器學(xué)習(xí)算法可能最為適合?()A.決策樹B.支持向量機(jī)C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)D.樸素貝葉斯二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋人工智能在定價(jià)策略和收益管理中的優(yōu)化。2、(本題5分)談?wù)勛匀徽Z言生成的方法和應(yīng)用。3、(本題5分)簡(jiǎn)述人工智能在供應(yīng)鏈風(fēng)險(xiǎn)管理和彈性建設(shè)中的作用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)研究一個(gè)使用人工智能的智能影視作品消費(fèi)者滿意度調(diào)查系統(tǒng),分析其如何調(diào)查消費(fèi)者的滿意度。2、(本題5分)剖析某智能陶瓷燒制工藝優(yōu)化系統(tǒng)中人工智能的溫度控制和成品質(zhì)量提升能力。3、(本題5分)考察某智能輿情監(jiān)測(cè)系統(tǒng)的工作原理和對(duì)社會(huì)輿論的分析能力。4、(本題5分)研究一個(gè)基于人工智能

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論