2025屆湖南邵陽縣德望中學高考壓軸卷數(shù)學試卷含解析_第1頁
2025屆湖南邵陽縣德望中學高考壓軸卷數(shù)學試卷含解析_第2頁
2025屆湖南邵陽縣德望中學高考壓軸卷數(shù)學試卷含解析_第3頁
2025屆湖南邵陽縣德望中學高考壓軸卷數(shù)學試卷含解析_第4頁
2025屆湖南邵陽縣德望中學高考壓軸卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖南邵陽縣德望中學高考壓軸卷數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,,是非零向量.若,則()A. B. C. D.2.《九章算術》“少廣”算法中有這樣一個數(shù)的序列:列出“全步”(整數(shù)部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分數(shù)進行通分約簡,又用最下面的分母去遍乘諸(未通者)分子和以通之數(shù),逐個照此同樣方法,直至全部為整數(shù),例如:及時,如圖:記為每個序列中最后一列數(shù)之和,則為()A.147 B.294 C.882 D.17643.已知函數(shù)的圖像上有且僅有四個不同的點關于直線的對稱點在的圖像上,則實數(shù)的取值范圍是()A. B. C. D.4.甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說:“我沒抓到.”乙說:“丙抓到了.”丙說:“丁抓到了”丁說:“我沒抓到."已知他們四人中只有一人說了真話,根據(jù)他們的說法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁5.已知,,則等于().A. B. C. D.6.第七屆世界軍人運動會于2019年10月18日至27日在中國武漢舉行,中國隊以133金64銀42銅位居金牌榜和獎牌榜的首位.運動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運動場地提供服務,要求每個人都要被派出去提供服務,且每個場地都要有志愿者服務,則甲和乙恰好在同一組的概率是()A. B. C. D.7.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還.”意思為有一個人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達目的地,請問第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里8.已知是圓心為坐標原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉到交圓于點,則的最大值為()A.3 B.2 C. D.9.已知集合,,若,則()A. B. C. D.10.總體由編號為01,02,...,39,40的40個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為()A.23 B.21 C.35 D.3211.如圖所示,已知雙曲線的右焦點為,雙曲線的右支上一點,它關于原點的對稱點為,滿足,且,則雙曲線的離心率是().A. B. C. D.12.將一張邊長為的紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線(a>0,b>0)的一條漸近線方程為,則該雙曲線的離心率為_______.14.的展開式中的常數(shù)項為______.15.在中,角所對的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.16.已知兩圓相交于兩點,,若兩圓圓心都在直線上,則的值是________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論函數(shù)單調性;(2)當時,求證:.18.(12分)已知,.(1)解不等式;(2)若方程有三個解,求實數(shù)的取值范圍.19.(12分)已知函數(shù).(1)求函數(shù)的零點;(2)設函數(shù)的圖象與函數(shù)的圖象交于,兩點,求證:;(3)若,且不等式對一切正實數(shù)x恒成立,求k的取值范圍.20.(12分)有最大值,且最大值大于.(1)求的取值范圍;(2)當時,有兩個零點,證明:.(參考數(shù)據(jù):)21.(12分)已知橢圓:(),與軸負半軸交于,離心率.(1)求橢圓的方程;(2)設直線:與橢圓交于,兩點,連接,并延長交直線于,兩點,已知,求證:直線恒過定點,并求出定點坐標.22.(10分)2019年是中華人民共和國成立70周年.為了讓人民了解建國70周年的風雨歷程,某地的民調機構隨機選取了該地的100名市民進行調查,將他們的年齡分成6段:,,…,,并繪制了如圖所示的頻率分布直方圖.(1)現(xiàn)從年齡在,,內的人員中按分層抽樣的方法抽取8人,再從這8人中隨機選取3人進行座談,用表示年齡在)內的人數(shù),求的分布列和數(shù)學期望;(2)若用樣本的頻率代替概率,用隨機抽樣的方法從該地抽取20名市民進行調查,其中有名市民的年齡在的概率為.當最大時,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點:平面向量數(shù)量積.【思路點睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標運算、數(shù)量積及平面幾何知識,又能考查學生的數(shù)形結合能力及轉化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:①利用已知條件,結合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運算進行轉化,再利用①求解(較難);③建系,借助向量的坐標運算,此法對解含垂直關系的問題往往有很好效果.2、A【解析】

根據(jù)題目所給的步驟進行計算,由此求得的值.【詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【點睛】本小題主要考查合情推理,考查中國古代數(shù)學文化,屬于基礎題.3、A【解析】

可將問題轉化,求直線關于直線的對稱直線,再分別討論兩函數(shù)的增減性,結合函數(shù)圖像,分析臨界點,進一步確定的取值范圍即可【詳解】可求得直線關于直線的對稱直線為,當時,,,當時,,則當時,,單減,當時,,單增;當時,,,當,,當時,單減,當時,單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當與()相切時,得,解得;當與()相切時,滿足,解得,結合圖像可知,即,故選:A【點睛】本題考查數(shù)形結合思想求解函數(shù)交點問題,導數(shù)研究函數(shù)增減性,找準臨界是解題的關鍵,屬于中檔題4、A【解析】

可采用假設法進行討論推理,即可得到結論.【詳解】由題意,假設甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,?。何覜]有抓到就是真的,與他們四人中只有一個人抓到是矛盾的;假設甲:我沒有抓到是假的,那么?。何覜]有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.【點睛】本題主要考查了合情推理及其應用,其中解答中合理采用假設法進行討論推理是解答的關鍵,著重考查了推理與分析判斷能力,屬于基礎題.5、B【解析】

由已知條件利用誘導公式得,再利用三角函數(shù)的平方關系和象限角的符號,即可得到答案.【詳解】由題意得,又,所以,結合解得,所以,故選B.【點睛】本題考查三角函數(shù)的誘導公式、同角三角函數(shù)的平方關系以及三角函數(shù)的符號與位置關系,屬于基礎題.6、A【解析】

根據(jù)題意,五人分成四組,先求出兩人組成一組的所有可能的分組種數(shù),再將甲乙組成一組的情況,即可求出概率.【詳解】五人分成四組,先選出兩人組成一組,剩下的人各自成一組,所有可能的分組共有種,甲和乙分在同一組,則其余三人各自成一組,只有一種分法,與場地無關,故甲和乙恰好在同一組的概率是.故選:A.【點睛】本題考查組合的應用和概率的計算,屬于基礎題.7、B【解析】

人每天走的路程構成公比為的等比數(shù)列,設此人第一天走的路程為,計算,代入得到答案.【詳解】由題意可知此人每天走的路程構成公比為的等比數(shù)列,設此人第一天走的路程為,則,解得,從而可得,故.故選:.【點睛】本題考查了等比數(shù)列的應用,意在考查學生的計算能力和應用能力.8、C【解析】

設射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計算即可.【詳解】設射線OA與x軸正向所成的角為,由已知,,,所以,當時,取得等號.故選:C.【點睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識,是一道容易題.9、A【解析】

由,得,代入集合B即可得.【詳解】,,,即:,故選:A【點睛】本題考查了集合交集的含義,也考查了元素與集合的關系,屬于基礎題.10、B【解析】

根據(jù)隨機數(shù)表法的抽樣方法,確定選出來的第5個個體的編號.【詳解】隨機數(shù)表第1行的第4列和第5列數(shù)字為4和6,所以從這兩個數(shù)字開始,由左向右依次選取兩個數(shù)字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在編號01,02,…,39,40內的有:16,26,16,24,23,21,…依次不重復的第5個編號為21.故選:B【點睛】本小題主要考查隨機數(shù)表法進行抽樣,屬于基礎題.11、C【解析】

易得,,又,平方計算即可得到答案.【詳解】設雙曲線C的左焦點為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.【點睛】本題考查求雙曲線離心率的問題,關鍵是建立的方程或不等關系,是一道中檔題.12、B【解析】設折成的四棱錐的底面邊長為,高為,則,故由題設可得,所以四棱錐的體積,應選答案B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意,由雙曲線的漸近線方程可得,即a=2b,進而由雙曲線的幾何性質可得cb,由雙曲線的離心率公式計算可得答案.【詳解】根據(jù)題意,雙曲線的漸近線方程為y=±x,又由該雙曲線的一條漸近線方程為x﹣2y=0,即yx,則有,即a=2b,則cb,則該雙曲線的離心率e;故答案為:.【點睛】本題考查雙曲線的幾何性質,關鍵是分析a、b之間的關系,屬于基礎題.14、160【解析】

先求的展開式中通項,令的指數(shù)為3即可求解結論.【詳解】解:因為的展開式的通項公式為:;令,可得;的展開式中的常數(shù)項為:.故答案為:160.【點睛】本題考查二項式系數(shù)的性質,關鍵是熟記二項展開式的通項,屬于基礎題.15、等腰三角形【解析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,16、【解析】

根據(jù)題意,相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點在這條直線上,列出方程解得即可得到結論.【詳解】由,,設的中點為,根據(jù)題意,可得,且,解得,,,故.故答案為:.【點睛】本題考查相交弦的性質,解題的關鍵在于利用相交弦的性質,即兩圓的連心線垂直平分相交弦,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】

(1)根據(jù)的導函數(shù)進行分類討論單調性(2)欲證,只需證,構造函數(shù),證明,這時需研究的單調性,求其最大值即可【詳解】解:(1)的定義域為,,①當時,由得,由,得,所以在上單調遞增,在單調遞減;②當時,由得,由,得,或,所以在上單調遞增,在單調遞減,在單調遞增;③當時,,所以在上單調遞增;④當時,由,得,由,得,或,所以在上單調遞增,在單調遞減,在單調遞增.(2)當時,欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當變化時,,的變化如下:0單調遞增單調遞減所以.因為,所以,所以.即,所以當時,成立.【點睛】考查求函數(shù)單調性的方法和用函數(shù)的最值證明不等式的方法,難題.18、(1);(2).【解析】

(1)對分三種情況討論,分別去掉絕對值符號,然后求解不等式組,再求并集即可得結果;(2).作出函數(shù)的圖象,當直線與函數(shù)的圖象有三個公共點時,方程有三個解,由圖可得結果.【詳解】(1)不等式,即為.當時,即化為,得,此時不等式的解集為,當時,即化為,解得,此時不等式的解集為.綜上,不等式的解集為.(2)即.作出函數(shù)的圖象如圖所示,當直線與函數(shù)的圖象有三個公共點時,方程有三個解,所以.所以實數(shù)的取值范圍是.【點睛】絕對值不等式的解法:法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結合的思想;法二:利用“零點分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.19、(1)x=1(2)證明見解析(3)【解析】

(1)令,根據(jù)導函數(shù)確定函數(shù)的單調區(qū)間,求出極小值,進而求解;(2)轉化思想,要證,即證,即證,構造函數(shù)進而求證;(3)不等式對一切正實數(shù)恒成立,,設,分類討論進而求解.【詳解】解:(1)令,所以,當時,,在上單調遞增;當時,,在單調遞減;所以,所以的零點為.(2)由題意,,要證,即證,即證,令,則,由(1)知,當且僅當時等號成立,所以,即,所以原不等式成立.(3)不等式對一切正實數(shù)恒成立,,設,,記,△,①當△時,即時,恒成立,故單調遞增.于是當時,,又,故,當時,,又,故,又當時,,因此,當時,,②當△,即時,設的兩個不等實根分別為,,又,于是,故當時,,從而在單調遞減;當時,,此時,于是,即舍去,綜上,的取值范圍是.【點睛】(1)考查函數(shù)求導,根據(jù)導函數(shù)確定函數(shù)的單調性,零點;(2)考查轉化思想,構造函數(shù)求極值;(3)考查分類討論思想,函數(shù)的單調性,函數(shù)的求導;屬于難題.20、(1);(2)證明見解析.【解析】

(1)求出函數(shù)的定義域為,,分和兩種情況討論,分析函數(shù)的單調性,求出函數(shù)的最大值,即可得出關于實數(shù)的不等式,進而可求得實數(shù)的取值范圍;(2)利用導數(shù)分析出函數(shù)在上遞增,在上遞減,可得出,由,構造函數(shù),證明出,進而得出,再由函數(shù)在區(qū)間上的單調性可證得結論.【詳解】(1)函數(shù)的定義域為,且.當時,對任意的,,此時函數(shù)在上為增函數(shù),函數(shù)為最大值;當時,令,得.當時,,此時函數(shù)單調遞增;當時,,此時函數(shù)單調遞減.所以,函數(shù)在處取得極大值,亦即最大值,即,解得.綜上所述,實數(shù)的取值范圍是;(2)當時,,定義域為,,當時,;當時,.所以,函數(shù)的單調遞增區(qū)間為,單調遞減區(qū)間為.由于函數(shù)有兩個零點、且,,,構造函數(shù),其中,,令,,當時,,所以,函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論