![泰州職業(yè)技術(shù)學院《平面廣告設(shè)計》2023-2024學年第一學期期末試卷_第1頁](http://file4.renrendoc.com/view14/M04/2D/35/wKhkGWdyIUGACvmzAAMAM2OYNvk588.jpg)
![泰州職業(yè)技術(shù)學院《平面廣告設(shè)計》2023-2024學年第一學期期末試卷_第2頁](http://file4.renrendoc.com/view14/M04/2D/35/wKhkGWdyIUGACvmzAAMAM2OYNvk5882.jpg)
![泰州職業(yè)技術(shù)學院《平面廣告設(shè)計》2023-2024學年第一學期期末試卷_第3頁](http://file4.renrendoc.com/view14/M04/2D/35/wKhkGWdyIUGACvmzAAMAM2OYNvk5883.jpg)
![泰州職業(yè)技術(shù)學院《平面廣告設(shè)計》2023-2024學年第一學期期末試卷_第4頁](http://file4.renrendoc.com/view14/M04/2D/35/wKhkGWdyIUGACvmzAAMAM2OYNvk5884.jpg)
![泰州職業(yè)技術(shù)學院《平面廣告設(shè)計》2023-2024學年第一學期期末試卷_第5頁](http://file4.renrendoc.com/view14/M04/2D/35/wKhkGWdyIUGACvmzAAMAM2OYNvk5885.jpg)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁泰州職業(yè)技術(shù)學院《平面廣告設(shè)計》
2023-2024學年第一學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的圖像檢索任務(wù)中,根據(jù)用戶提供的圖像或特征在數(shù)據(jù)庫中查找相似的圖像。假設(shè)要從一個大型圖像庫中找到與給定圖像相似的圖片,以下關(guān)于圖像檢索方法的描述,正確的是:()A.基于圖像的顏色和紋理特征進行檢索能夠滿足所有的檢索需求B.深度學習中的卷積神經(jīng)網(wǎng)絡(luò)提取的特征在圖像檢索中不如手工設(shè)計的特征有效C.考慮圖像的語義信息和高層特征可以提高圖像檢索的準確性和相關(guān)性D.圖像檢索的速度和效率不受數(shù)據(jù)庫大小和特征維度的影響2、在計算機視覺的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不變特征變換)特征是一種經(jīng)典的方法。假設(shè)我們要對一組包含不同視角和縮放比例的物體圖像進行匹配,SIFT特征的哪個特性使其在這種情況下表現(xiàn)出色?()A.對旋轉(zhuǎn)和尺度變化具有不變性B.計算速度快,效率高C.特征維度低,易于存儲和處理D.對光照變化不敏感3、當進行圖像的目標計數(shù)任務(wù)時,假設(shè)要統(tǒng)計一張圖像中某種物體的數(shù)量,例如統(tǒng)計羊群中的羊的數(shù)量。以下哪種方法可能更準確地完成計數(shù)任務(wù)?()A.基于深度學習的目標計數(shù)模型B.手動逐個計數(shù)C.估計圖像中物體的平均大小,然后計算總面積來推算數(shù)量D.隨機猜測物體的數(shù)量4、在計算機視覺中,目標檢測是一項重要的任務(wù)。假設(shè)要開發(fā)一個能夠在城市交通場景中檢測車輛和行人的系統(tǒng)。以下關(guān)于目標檢測算法的選擇,哪一項是需要重點考慮的因素?()A.算法的檢測速度,以滿足實時性要求B.算法在小目標檢測上的性能,因為車輛和行人在圖像中可能較小C.算法的模型復雜度,越復雜的模型效果越好D.算法是否開源,開源的算法更易于使用5、計算機視覺在農(nóng)業(yè)領(lǐng)域的應用中,例如對農(nóng)作物的生長監(jiān)測。假設(shè)要通過圖像分析評估農(nóng)作物的健康狀況,以下哪種特征可能對判斷病蟲害的存在較為敏感?()A.農(nóng)作物的顏色和紋理B.農(nóng)作物的高度和形狀C.農(nóng)田的土壤濕度D.農(nóng)田的地理位置6、對于圖像的超分辨率重建任務(wù),假設(shè)要將一張低分辨率的圖像恢復為高分辨率圖像,同時保留圖像的細節(jié)和清晰度。這張低分辨率圖像可能存在模糊和失真。以下哪種方法在處理這種情況時可能表現(xiàn)更好?()A.基于插值的方法,如雙線性插值和雙三次插值B.基于深度學習的超分辨率重建模型,如SRCNNC.對低分辨率圖像進行簡單的銳化處理D.不進行任何處理,直接使用低分辨率圖像7、計算機視覺在智能交通系統(tǒng)中的應用可以優(yōu)化交通流量和提高安全性。假設(shè)要通過計算機視覺監(jiān)測道路上的車輛擁堵情況。以下關(guān)于計算機視覺在智能交通中的描述,哪一項是錯誤的?()A.可以通過車輛檢測和計數(shù)來評估道路的擁堵程度B.能夠識別車輛的類型和行駛方向,為交通管理提供數(shù)據(jù)支持C.計算機視覺在智能交通中的應用完全不受惡劣天氣和光照條件的影響D.可以與交通信號控制系統(tǒng)聯(lián)動,實現(xiàn)自適應的交通信號配時8、在計算機視覺中,特征提取是非常關(guān)鍵的一步。假設(shè)我們要對一組風景圖像進行特征提取,以便后續(xù)的圖像檢索和分類任務(wù)。以下哪種特征提取方法能夠捕捉到圖像的全局和局部特征,并且對圖像的旋轉(zhuǎn)、縮放等變換具有較好的不變性?()A.尺度不變特征變換(SIFT)B.方向梯度直方圖(HOG)C.局部二值模式(LBP)D.卷積神經(jīng)網(wǎng)絡(luò)自動學習的特征9、在計算機視覺的姿態(tài)估計任務(wù)中,例如估計人體關(guān)節(jié)的位置和姿態(tài),以下哪種方法可能在精度和實時性之間取得較好的平衡?()A.基于模型的方法B.基于深度學習的回歸方法C.基于深度學習的分類方法D.以上都不是10、當利用計算機視覺進行圖像語義分割任務(wù),例如將圖像中的不同物體分割出來,以下哪種深度學習架構(gòu)可能在分割精度和效率方面表現(xiàn)較好?()A.FCNB.U-NetC.SegNetD.以上都是11、在計算機視覺的場景理解任務(wù)中,假設(shè)要理解一個室內(nèi)場景的布局和功能,例如判斷是辦公室還是客廳。以下哪種信息對于準確理解場景是至關(guān)重要的?()A.物體的類別和位置B.圖像的顏色分布C.圖像的拍攝角度D.隨機選擇圖像中的部分區(qū)域進行分析12、在計算機視覺的全景圖像拼接任務(wù)中,假設(shè)要將多張拍攝的局部圖像拼接成一幅完整的全景圖。以下關(guān)于圖像匹配和融合的步驟,哪一項是容易出錯的?()A.準確找到相鄰圖像之間的特征點進行匹配B.對匹配后的圖像進行幾何校正和投影變換C.直接將圖像拼接在一起,不進行任何過渡處理D.采用合適的融合算法,消除拼接處的明顯痕跡13、計算機視覺在體育賽事分析中的應用可以提供更多的數(shù)據(jù)和見解。假設(shè)要分析一場足球比賽中球員的跑動軌跡和動作。以下關(guān)于計算機視覺在體育賽事中的描述,哪一項是不準確的?()A.可以通過對視頻的分析,自動跟蹤球員的位置和運動軌跡B.能夠?qū)η騿T的動作進行分類,如傳球、射門和防守C.計算機視覺在體育賽事分析中的結(jié)果可以直接作為裁判的判罰依據(jù),無需人工復查D.可以結(jié)合多攝像頭的信息,獲取更全面和準確的比賽數(shù)據(jù)14、計算機視覺中,以下哪種技術(shù)常用于圖像的超分辨率重建的損失函數(shù)?()A.L1損失B.L2損失C.感知損失D.以上都是15、計算機視覺中的光流計算用于估計圖像中像素的運動。假設(shè)要對一個快速運動的物體進行光流估計,同時場景中存在光照變化和噪聲干擾。在這種情況下,以下哪種光流計算方法能夠提供更準確和穩(wěn)定的結(jié)果?()A.Lucas-Kanade方法B.Horn-Schunck方法C.Farneback方法D.DeepFlow方法二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述計算機視覺在智能家居中的場景理解和設(shè)備控制。2、(本題5分)說明計算機視覺中生成對抗網(wǎng)絡(luò)的應用。3、(本題5分)簡述圖像的高斯濾波的特點。4、(本題5分)計算機視覺中如何進行礦產(chǎn)資源勘查?三、應用題(本大題共5個小題,共25分)1、(本題5分)利用目標檢測算法,在地質(zhì)勘查圖像中檢測礦坑。2、(本題5分)使用計算機視覺方法,檢測高鐵站候車室的座位使用情況。3、(本題5分)通過計算機視覺,對不同類型的面塑作品進行分類。4、(本題5分)設(shè)計一個基于計算機視覺的掌紋識別系統(tǒng)。5、(本題5分)設(shè)計一個基于計算機視覺的指紋識別系統(tǒng)。四、分析題(本大題共4個小題,共40分)1、(本題10分)觀察某時尚品牌的時尚雜志廣告設(shè)計,闡述其如何通過視覺效果和文案內(nèi)容吸引讀者關(guān)注品牌。2、(本題10分)解讀某游樂園的游樂
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年粗效紙框過濾器項目投資價值分析報告
- 中、大功率激光器項目風險識別與評估綜合報告
- 海運合同貨物跟蹤策略
- 房屋中介服務(wù)合同
- 電影拍攝制作合作合同
- 2025年農(nóng)產(chǎn)品交換合同范本
- 2025年度城市形象宣傳廣告工程合同
- 2025年工地渣土車高效運輸及智能監(jiān)控合同
- 2025年度人工智能教育簡易合同模板(AI教學平臺合作版)
- 2025年度大型公共建筑幕墻工程分包合同范本
- 商業(yè)銀行的風險審計與內(nèi)部控制
- 2025年新能源汽車銷售傭金返點合同范本6篇
- 2025-2030年中國配電變壓器市場未來發(fā)展趨勢及前景調(diào)研分析報告
- GB/T 45120-2024道路車輛48 V供電電壓電氣要求及試驗
- 2025年上海市嘉定區(qū)中考英語一模試卷
- 潤滑油、潤滑脂培訓課件
- 2025年中核財務(wù)有限責任公司招聘筆試參考題庫含答案解析
- 華中師大一附中2024-2025學年度上學期高三年級第二次考試數(shù)學試題(含解析)
- ADA糖尿病醫(yī)學診療標準指南修訂要點解讀(2025)課件
- 健康管理-理論知識復習測試卷含答案
- 成人腦室外引流護理-中華護理學會團體 標準
評論
0/150
提交評論