銅仁職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)理論與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
銅仁職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)理論與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
銅仁職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)理論與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
銅仁職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)理論與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
銅仁職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)理論與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)銅仁職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)理論與實(shí)踐》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)正在研究一個(gè)自然語(yǔ)言處理任務(wù),例如文本分類(lèi)。文本數(shù)據(jù)具有豐富的語(yǔ)義和語(yǔ)法結(jié)構(gòu),同時(shí)詞匯量很大。為了有效地表示這些文本,以下哪種文本表示方法在深度學(xué)習(xí)中經(jīng)常被使用?()A.詞袋模型(BagofWords)B.詞嵌入(WordEmbedding)C.主題模型(TopicModel)D.語(yǔ)法樹(shù)表示2、假設(shè)正在開(kāi)發(fā)一個(gè)智能推薦系統(tǒng),用于向用戶推薦個(gè)性化的商品。系統(tǒng)需要根據(jù)用戶的歷史購(gòu)買(mǎi)記錄、瀏覽行為、搜索關(guān)鍵詞等信息來(lái)預(yù)測(cè)用戶的興趣和需求。在這個(gè)過(guò)程中,特征工程起到了關(guān)鍵作用。如果要將用戶的購(gòu)買(mǎi)記錄轉(zhuǎn)化為有效的特征,以下哪種方法不太合適?()A.統(tǒng)計(jì)用戶購(gòu)買(mǎi)每種商品的頻率B.對(duì)用戶購(gòu)買(mǎi)的商品進(jìn)行分類(lèi),并計(jì)算各類(lèi)別的比例C.直接將用戶購(gòu)買(mǎi)的商品名稱(chēng)作為特征輸入模型D.計(jì)算用戶購(gòu)買(mǎi)商品的時(shí)間間隔和購(gòu)買(mǎi)周期3、假設(shè)正在開(kāi)發(fā)一個(gè)用于情感分析的深度學(xué)習(xí)模型,需要對(duì)模型進(jìn)行優(yōu)化。以下哪種優(yōu)化算法在深度學(xué)習(xí)中被廣泛使用?()A.隨機(jī)梯度下降(SGD)B.自適應(yīng)矩估計(jì)(Adam)C.牛頓法D.共軛梯度法4、在一個(gè)強(qiáng)化學(xué)習(xí)的應(yīng)用中,環(huán)境的狀態(tài)空間非常大且復(fù)雜。以下哪種策略可能有助于提高學(xué)習(xí)效率?()A.基于值函數(shù)的方法,如Q-learning,通過(guò)估計(jì)狀態(tài)值來(lái)選擇動(dòng)作,但可能存在過(guò)高估計(jì)問(wèn)題B.策略梯度方法,直接優(yōu)化策略,但方差較大且收斂慢C.演員-評(píng)論家(Actor-Critic)方法,結(jié)合值函數(shù)和策略梯度的優(yōu)點(diǎn),但模型復(fù)雜D.以上方法結(jié)合使用,并根據(jù)具體環(huán)境進(jìn)行調(diào)整5、機(jī)器學(xué)習(xí)中,批量歸一化(BatchNormalization)通常應(yīng)用于()A.輸入層B.隱藏層C.輸出層D.以上都可以6、在機(jī)器學(xué)習(xí)中,模型的可解釋性是一個(gè)重要的方面。以下哪種模型通常具有較好的可解釋性?()A.決策樹(shù)B.神經(jīng)網(wǎng)絡(luò)C.隨機(jī)森林D.支持向量機(jī)7、集成學(xué)習(xí)是一種提高機(jī)器學(xué)習(xí)性能的方法。以下關(guān)于集成學(xué)習(xí)的說(shuō)法中,錯(cuò)誤的是:集成學(xué)習(xí)通過(guò)組合多個(gè)弱學(xué)習(xí)器來(lái)構(gòu)建一個(gè)強(qiáng)學(xué)習(xí)器。常見(jiàn)的集成學(xué)習(xí)方法有bagging、boosting和stacking等。那么,下列關(guān)于集成學(xué)習(xí)的說(shuō)法錯(cuò)誤的是()A.bagging方法通過(guò)隨機(jī)采樣訓(xùn)練數(shù)據(jù)來(lái)構(gòu)建多個(gè)不同的學(xué)習(xí)器B.boosting方法通過(guò)逐步調(diào)整樣本權(quán)重來(lái)構(gòu)建多個(gè)不同的學(xué)習(xí)器C.stacking方法將多個(gè)學(xué)習(xí)器的預(yù)測(cè)結(jié)果作為新的特征輸入到一個(gè)元學(xué)習(xí)器中D.集成學(xué)習(xí)方法一定比單個(gè)學(xué)習(xí)器的性能更好8、某研究需要對(duì)大量的文本數(shù)據(jù)進(jìn)行情感分析,判斷文本的情感傾向是積極、消極還是中性。以下哪種機(jī)器學(xué)習(xí)方法在處理此類(lèi)自然語(yǔ)言處理任務(wù)時(shí)經(jīng)常被采用?()A.基于規(guī)則的方法B.機(jī)器學(xué)習(xí)分類(lèi)算法C.深度學(xué)習(xí)情感分析模型D.以上方法都可能有效,取決于數(shù)據(jù)和任務(wù)特點(diǎn)9、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)大量的圖像進(jìn)行分類(lèi),但是計(jì)算資源有限。以下哪種技術(shù)可以在不顯著降低性能的前提下減少計(jì)算量?()A.模型壓縮B.數(shù)據(jù)量化C.遷移學(xué)習(xí)D.以上技術(shù)都可以考慮10、考慮一個(gè)圖像分割任務(wù),即將圖像分割成不同的區(qū)域或?qū)ο蟆R韵履姆N方法常用于圖像分割?()A.閾值分割B.區(qū)域生長(zhǎng)C.邊緣檢測(cè)D.以上都是11、考慮一個(gè)時(shí)間序列預(yù)測(cè)問(wèn)題,數(shù)據(jù)具有明顯的季節(jié)性特征。以下哪種方法可以處理這種季節(jié)性?()A.在模型中添加季節(jié)性項(xiàng)B.使用季節(jié)性差分C.采用季節(jié)性自回歸移動(dòng)平均(SARIMA)模型D.以上都可以12、在一個(gè)金融風(fēng)險(xiǎn)預(yù)測(cè)的項(xiàng)目中,需要根據(jù)客戶的信用記錄、收入水平、負(fù)債情況等多種因素來(lái)預(yù)測(cè)其違約的可能性。同時(shí),要求模型能夠適應(yīng)不斷變化的市場(chǎng)環(huán)境和新的數(shù)據(jù)特征。以下哪種模型架構(gòu)和訓(xùn)練策略可能是最恰當(dāng)?shù)模浚ǎ〢.構(gòu)建一個(gè)線性回歸模型,簡(jiǎn)單直觀,易于解釋和更新,但可能無(wú)法處理復(fù)雜的非線性關(guān)系B.選擇邏輯回歸模型,結(jié)合正則化技術(shù)防止過(guò)擬合,能夠處理二分類(lèi)問(wèn)題,但對(duì)于多因素的復(fù)雜關(guān)系表達(dá)能力有限C.建立多層感知機(jī)神經(jīng)網(wǎng)絡(luò),通過(guò)調(diào)整隱藏層的數(shù)量和節(jié)點(diǎn)數(shù)來(lái)捕捉復(fù)雜關(guān)系,但訓(xùn)練難度較大,容易過(guò)擬合D.采用基于隨機(jī)森林的集成學(xué)習(xí)方法,結(jié)合特征選擇和超參數(shù)調(diào)優(yōu),能夠處理多因素和非線性關(guān)系,且具有較好的穩(wěn)定性和泛化能力13、假設(shè)正在進(jìn)行一個(gè)特征選擇任務(wù),需要從大量的特征中選擇最具代表性和區(qū)分性的特征。以下哪種特征選擇方法基于特征與目標(biāo)變量之間的相關(guān)性?()A.過(guò)濾式方法B.包裹式方法C.嵌入式方法D.以上方法都可以14、考慮在一個(gè)圖像識(shí)別任務(wù)中,需要對(duì)不同的物體進(jìn)行分類(lèi),例如貓、狗、汽車(chē)等。為了提高模型的準(zhǔn)確性和泛化能力,以下哪種數(shù)據(jù)增強(qiáng)技術(shù)可能是有效的()A.隨機(jī)旋轉(zhuǎn)圖像B.增加圖像的亮度C.對(duì)圖像進(jìn)行模糊處理D.減小圖像的分辨率15、在機(jī)器學(xué)習(xí)中,特征選擇是一項(xiàng)重要的任務(wù),旨在從眾多的原始特征中選擇出對(duì)模型性能有顯著影響的特征。假設(shè)我們有一個(gè)包含大量特征的數(shù)據(jù)集,在進(jìn)行特征選擇時(shí),以下哪種方法通常不被采用?()A.基于相關(guān)性分析,選擇與目標(biāo)變量高度相關(guān)的特征B.隨機(jī)選擇一部分特征,進(jìn)行試驗(yàn)和比較C.使用遞歸特征消除(RFE)方法,逐步篩選特征D.基于領(lǐng)域知識(shí)和經(jīng)驗(yàn),手動(dòng)選擇特征16、在進(jìn)行特征工程時(shí),需要對(duì)連續(xù)型特征進(jìn)行離散化處理。以下哪種離散化方法在某些情況下可以保留更多的信息,同時(shí)減少數(shù)據(jù)的復(fù)雜性?()A.等寬離散化B.等頻離散化C.基于聚類(lèi)的離散化D.基于決策樹(shù)的離散化17、假設(shè)正在進(jìn)行一個(gè)圖像生成任務(wù),例如生成逼真的人臉圖像。以下哪種生成模型在圖像生成領(lǐng)域取得了顯著成果?()A.變分自編碼器(VAE)B.生成對(duì)抗網(wǎng)絡(luò)(GAN)C.自回歸模型D.以上模型都常用于圖像生成18、在一個(gè)工業(yè)生產(chǎn)的質(zhì)量控制場(chǎng)景中,需要通過(guò)機(jī)器學(xué)習(xí)來(lái)實(shí)時(shí)監(jiān)測(cè)產(chǎn)品的質(zhì)量參數(shù),及時(shí)發(fā)現(xiàn)異常。數(shù)據(jù)具有高維度、動(dòng)態(tài)變化和噪聲等特點(diǎn)。以下哪種監(jiān)測(cè)和分析方法可能是最合適的?()A.基于主成分分析(PCA)的降維方法,找出主要的影響因素,但對(duì)異常的敏感度可能較低B.采用孤立森林算法,專(zhuān)門(mén)用于檢測(cè)異常數(shù)據(jù)點(diǎn),但對(duì)于高維數(shù)據(jù)效果可能不穩(wěn)定C.運(yùn)用自組織映射(SOM)網(wǎng)絡(luò),能夠?qū)?shù)據(jù)進(jìn)行聚類(lèi)和可視化,但實(shí)時(shí)性可能不足D.利用基于深度學(xué)習(xí)的自動(dòng)編碼器(Autoencoder),學(xué)習(xí)正常數(shù)據(jù)的模式,對(duì)異常數(shù)據(jù)有較好的檢測(cè)能力,但訓(xùn)練和計(jì)算成本較高19、在進(jìn)行時(shí)間序列預(yù)測(cè)時(shí),有多種方法可供選擇。假設(shè)我們要預(yù)測(cè)股票價(jià)格的走勢(shì)。以下關(guān)于時(shí)間序列預(yù)測(cè)方法的描述,哪一項(xiàng)是不正確的?()A.自回歸移動(dòng)平均(ARMA)模型假設(shè)時(shí)間序列是線性的,通過(guò)對(duì)歷史數(shù)據(jù)的加權(quán)平均和殘差來(lái)進(jìn)行預(yù)測(cè)B.差分整合移動(dòng)平均自回歸(ARIMA)模型可以處理非平穩(wěn)的時(shí)間序列,通過(guò)差分操作將其轉(zhuǎn)化為平穩(wěn)序列C.長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)能夠捕捉時(shí)間序列中的長(zhǎng)期依賴(lài)關(guān)系,適用于復(fù)雜的時(shí)間序列預(yù)測(cè)任務(wù)D.所有的時(shí)間序列預(yù)測(cè)方法都能準(zhǔn)確地預(yù)測(cè)未來(lái)的股票價(jià)格,不受市場(chǎng)不確定性和突發(fā)事件的影響20、在機(jī)器學(xué)習(xí)中,對(duì)于一個(gè)分類(lèi)問(wèn)題,我們需要選擇合適的算法來(lái)提高預(yù)測(cè)準(zhǔn)確性。假設(shè)數(shù)據(jù)集具有高維度、大量特征且存在非線性關(guān)系,同時(shí)樣本數(shù)量相對(duì)較少。在這種情況下,以下哪種算法可能是一個(gè)較好的選擇?()A.邏輯回歸B.決策樹(shù)C.支持向量機(jī)D.樸素貝葉斯二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋袋裝法(Bagging)和提升法(Boosting)的區(qū)別。2、(本題5分)解釋機(jī)器學(xué)習(xí)在海洋生物學(xué)中的生態(tài)監(jiān)測(cè)。3、(本題5分)解釋在深度學(xué)習(xí)中,激活函數(shù)的作用。4、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)中的聚類(lèi)算法及其分類(lèi)。5、(本題5分)解釋如何使用機(jī)器學(xué)習(xí)進(jìn)行文本摘要生成。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)基于RNN對(duì)自然語(yǔ)言中的語(yǔ)法錯(cuò)誤進(jìn)行檢測(cè)。2、(本題5分)采用自適應(yīng)矩估計(jì)(Adam)優(yōu)化算法訓(xùn)練圖像分類(lèi)模型。3、(本題5分)借助藝術(shù)創(chuàng)作數(shù)據(jù)激發(fā)創(chuàng)作靈感和創(chuàng)新。4、(本題5分)運(yùn)用回歸模型預(yù)測(cè)工廠的生產(chǎn)效率。5、(本題5分)利用睡眠醫(yī)學(xué)數(shù)據(jù)監(jiān)測(cè)睡眠質(zhì)量和診斷睡眠障礙。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論