浙江省9+1高中聯(lián)盟2025屆高考仿真卷數(shù)學試卷含解析_第1頁
浙江省9+1高中聯(lián)盟2025屆高考仿真卷數(shù)學試卷含解析_第2頁
浙江省9+1高中聯(lián)盟2025屆高考仿真卷數(shù)學試卷含解析_第3頁
浙江省9+1高中聯(lián)盟2025屆高考仿真卷數(shù)學試卷含解析_第4頁
浙江省9+1高中聯(lián)盟2025屆高考仿真卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省9+1高中聯(lián)盟2025屆高考仿真卷數(shù)學試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)函數(shù)在上可導,其導函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.2.已知,是兩條不重合的直線,,是兩個不重合的平面,則下列命題中錯誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則3.趙爽是我國古代數(shù)學家、天文學家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設(shè),若在大正六邊形中隨機取一點,則此點取自小正六邊形的概率為()A. B.C. D.4.已知非零向量滿足,若夾角的余弦值為,且,則實數(shù)的值為()A. B. C.或 D.5.為虛數(shù)單位,則的虛部為()A. B. C. D.6.設(shè)a,b都是不等于1的正數(shù),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件7.已知且,函數(shù),若,則()A.2 B. C. D.8.已知函數(shù)(,,),將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的部分圖象如圖所示,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知角的終邊與單位圓交于點,則等于()A. B. C. D.10.函數(shù)f(x)=lnA. B. C. D.11.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.12.已知(i為虛數(shù)單位,),則ab等于()A.2 B.-2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列為等比數(shù)列,,則_____.14.已知集合,,則____________.15.甲,乙兩隊參加關(guān)于“一帶一路”知識競賽,甲隊有編號為1,2,3的三名運動員,乙隊有編號為1,2,3,4的四名運動員,若兩隊各出一名隊員進行比賽,則出場的兩名運動員編號相同的概率為______.16.實數(shù)滿足,則的最大值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)=x-1+x+2,記f(x)(Ⅰ)解不等式f(x)≤5;(Ⅱ)若正實數(shù)a,b滿足1a+118.(12分)如圖,矩形和梯形所在的平面互相垂直,,,.(1)若為的中點,求證:平面;(2)若,求四棱錐的體積.19.(12分)已知數(shù)列滿足,,其前n項和為.(1)通過計算,,,猜想并證明數(shù)列的通項公式;(2)設(shè)數(shù)列滿足,,,若數(shù)列是單調(diào)遞減數(shù)列,求常數(shù)t的取值范圍.20.(12分)如圖,底面是等腰梯形,,點為的中點,以為邊作正方形,且平面平面.(1)證明:平面平面.(2)求二面角的正弦值.21.(12分)已知函數(shù),(Ⅰ)當時,證明;(Ⅱ)已知點,點,設(shè)函數(shù),當時,試判斷的零點個數(shù).22.(10分)已知數(shù)列的前項和為,且滿足().(1)求數(shù)列的通項公式;(2)設(shè)(),數(shù)列的前項和.若對恒成立,求實數(shù),的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由題意首先確定導函數(shù)的符號,然后結(jié)合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導,其導函數(shù)為,且函數(shù)在處取得極大值,當時,;當時,;當時,.時,,時,,當或時,;當時,.故選:【點睛】根據(jù)函數(shù)取得極大值,判斷導函數(shù)在極值點附近左側(cè)為正,右側(cè)為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.2、D【解析】

根據(jù)線面平行和面面平行的性質(zhì),可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項A:若,,根據(jù)線面平行和面面平行的性質(zhì),有或,故A正確;選項B:若,,,由線面平行的判定定理,有,故B正確;選項C:若,,,故,所成的二面角為,則,故C正確;選項D,若,,有可能,故D不正確.故選:D【點睛】本題考查了空間中的平行垂直關(guān)系判斷,考查了學生邏輯推理,空間想象能力,屬于中檔題.3、D【解析】

設(shè),則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點取自小正六邊形的概率.故選:D.【點睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.4、D【解析】

根據(jù)向量垂直則數(shù)量積為零,結(jié)合以及夾角的余弦值,即可求得參數(shù)值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數(shù)量積的應(yīng)用,涉及由向量垂直求參數(shù)值,屬基礎(chǔ)題.5、C【解析】

利用復數(shù)的運算法則計算即可.【詳解】,故虛部為.故選:C.【點睛】本題考查復數(shù)的運算以及復數(shù)的概念,注意復數(shù)的虛部為,不是,本題為基礎(chǔ)題,也是易錯題.6、C【解析】

根據(jù)對數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對數(shù)不等式的解法,是基礎(chǔ)題.7、C【解析】

根據(jù)分段函數(shù)的解析式,知當時,且,由于,則,即可求出.【詳解】由題意知:當時,且由于,則可知:,則,∴,則,則.即.故選:C.【點睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.8、B【解析】

先根據(jù)圖象求出函數(shù)的解析式,再由平移知識得到的解析式,然后分別找出和的等價條件,即可根據(jù)充分條件,必要條件的定義求出.【詳解】設(shè),根據(jù)圖象可知,,再由,取,∴.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,∴.,,令,則,顯然,∴是的必要不充分條件.故選:B.【點睛】本題主要考查利用圖象求正(余)弦型函數(shù)的解析式,三角函數(shù)的圖形變換,二倍角公式的應(yīng)用,充分條件,必要條件的定義的應(yīng)用,意在考查學生的數(shù)學運算能力和邏輯推理能力,屬于中檔題.9、B【解析】

先由三角函數(shù)的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點,,故選:B【點睛】考查三角函數(shù)的定義和二倍角公式,是基礎(chǔ)題.10、C【解析】因為fx=lnx2-4x+4x-23=11、B【解析】

選B.考點:圓心坐標12、A【解析】

利用復數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)相等的條件列式求解.【詳解】,,得,..故選:.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)相等的條件,意在考查學生對這些知識的理解掌握水平,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、81【解析】

設(shè)數(shù)列的公比為,利用等比數(shù)列通項公式求出,代入等比數(shù)列通項公式即可求解.【詳解】設(shè)數(shù)列的公比為,由題意知,因為,由等比數(shù)列通項公式可得,,解得,由等比數(shù)列通項公式可得,.故答案為:【點睛】本題考查等比數(shù)列通項公式;考查運算求解能力;屬于基礎(chǔ)題.14、【解析】

由于,,則.15、【解析】

出場運動員編號相同的事件顯然有3種,計算出總的基本事件數(shù),由古典概型概率計算公式求得答案.【詳解】甲隊有編號為1,2,3的三名運動員,乙隊有編號為1,2,3,4的四名運動員,出場的兩名運動員編號相同的事件數(shù)為3,出現(xiàn)的基本事件總數(shù),則出場的兩名運動員編號相同的概率為.故答案為:【點睛】本題考查求古典概率的概率問題,屬于基礎(chǔ)題.16、.【解析】

畫出可行域,解出可行域的頂點坐標,代入目標函數(shù)求出相應(yīng)的數(shù)值,比較大小得到目標函數(shù)最值.【詳解】解:作出可行域,如圖所示,則當直線過點時直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【點睛】本題考查線性規(guī)劃的線性目標函數(shù)的最優(yōu)解問題.線性目標函數(shù)的最優(yōu)解一般在平面區(qū)域的頂點或邊界處取得,所以對于一般的線性規(guī)劃問題,若可行域是一個封閉的圖形,我們可以直接解出可行域的頂點,然后將坐標代入目標函數(shù)求出相應(yīng)的數(shù)值,從而確定目標函數(shù)的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ){x|-3≤x≤2}(Ⅱ)見證明【解析】

(Ⅰ)由題意結(jié)合不等式的性質(zhì)零點分段求解不等式的解集即可;(Ⅱ)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(Ⅰ)①當x>1時,f(x)=(x-1)+(x+2)=2x+1≤5,即x≤2,∴1<x≤2;②當-2≤x≤1時,f(x)=(1-x)+(x+2)=3≤5,∴-2≤x≤1;③當x<-2時,f(x)=(1-x)-(x+2)=-2x-1≤5,即x≥-3,∴-3≤x<-2.綜上所述,原不等式的解集為{x|-3≤x≤2}.(Ⅱ)∵f(x)=x-1當且僅當-2≤x≤1時,等號成立.∴f(x)的最小值m=3.∴[(即2a當且僅當2a×1又1a+1b=∴2a【點睛】本題主要考查絕對值不等式的解法,柯西不等式及其應(yīng)用,絕對值三角不等式求最值的方法等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.18、(1)見解析(2)【解析】

(1)設(shè)EC與DF交于點N,連結(jié)MN,由中位線定理可得MN∥AC,故AC∥平面MDF;(2)取CD中點為G,連結(jié)BG,EG,則可證四邊形ABGD是矩形,由面面垂直的性質(zhì)得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,從而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入體積公式即可計算出體積.【詳解】(1)證明:設(shè)與交于點,連接,在矩形中,點為中點,∵為的中點,∴,又∵平面,平面,∴平面.(2)取中點為,連接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的長即為四棱錐的高,在梯形中,,∴四邊形是平行四邊形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.【點睛】求錐體的體積要充分利用多面體的截面和旋轉(zhuǎn)體的軸截面,將空間問題轉(zhuǎn)化為平面問題求解,注意求體積的一些特殊方法——分割法、補形法、等體積法.①割補法:求一些不規(guī)則幾何體的體積時,常用割補法轉(zhuǎn)化成已知體積公式的幾何體進行解決.②等積法:等積法包括等面積法和等體積法.等積法的前提是幾何圖形(或幾何體)的面積(或體積)通過已知條件可以得到,利用等積法可以用來求解幾何圖形的高或幾何體的高,特別是在求三角形的高和三棱錐的高時,這一方法回避了通過具體作圖得到三角形(或三棱錐)的高,而通過直接計算得到高的數(shù)值.19、(1),證明見解析;(2)【解析】

(1)首先利用賦值法求出的值,進一步利用定義求出數(shù)列的通項公式;(2)首先利用疊乘法求出數(shù)列的通項公式,進一步利用數(shù)列的單調(diào)性和基本不等式的應(yīng)用求出參數(shù)的范圍.【詳解】(1)數(shù)列滿足,,其前項和為.所以,,則,,,所以猜想得:.證明:由于,所以,則:(常數(shù)),所以數(shù)列是首項為1,公差為的等差數(shù)列.所以,整理得.(2)數(shù)列滿足,,所以,則,所以.則,所以,所以,整理得,由于,所以,即.【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應(yīng)用,疊乘法的應(yīng)用,函數(shù)的單調(diào)性在數(shù)列中的應(yīng)用,基本不等式的應(yīng)用,主要考察學生的運算能力和轉(zhuǎn)換能力,屬于中檔題型.20、(1)見解析;(2)【解析】

(1)先證明四邊形是菱形,進而可知,然后可得到平面,即可證明平面平面;(2)記AC,BE的交點為O,再取FG的中點P.以O(shè)為坐標原點,以射線OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標系,分別求出平面ABF和DBF的法向量,然后由,可求出二面角的余弦值,進而可求出二面角的正弦值.【詳解】(1)證明:因為點為的中點,,所以,因為,所以,所以四邊形是平行四邊形,因為,所以平行四邊形是菱形,所以,因為平面平面,且平面平面,所以平面.因為平面,所以平面平面.(2)記AC,BE的交點為O,再取FG的中點P.由題意可知AC,BE,OP兩兩垂直,故以O(shè)為坐標原點,以射線OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標系.因為底面ABCD是等腰梯形,,所以四邊形ABCE是菱形,且,所以,則,設(shè)平面ABF的法向量為,則,不妨取,則,設(shè)平面DBF的法向量為,則,不妨取,則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論