版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁西安郵電大學《包裝與設(shè)計》
2023-2024學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、假設(shè)要開發(fā)一個能夠自動識別水果種類和品質(zhì)的計算機視覺系統(tǒng),用于水果分揀和質(zhì)量評估。在獲取水果圖像時,可能會受到光照、角度和遮擋等因素的影響。為了提高識別的準確性和魯棒性,以下哪種圖像預處理技術(shù)可能是關(guān)鍵?()A.圖像增強B.圖像去噪C.圖像歸一化D.圖像分割2、在計算機視覺的人臉識別任務(wù)中,假設(shè)要在一個大型數(shù)據(jù)庫中快速準確地識別出特定人物的面部。數(shù)據(jù)庫中的人臉圖像可能存在表情、光照和姿態(tài)的變化。為了提高人臉識別的性能,以下哪種方法是常用且有效的?()A.提取人臉的全局特征,如整體形狀和輪廓B.僅關(guān)注人臉的局部特征,如眼睛和嘴巴C.使用多模態(tài)數(shù)據(jù),結(jié)合人臉的紋理和深度信息D.隨機選擇人臉特征進行匹配3、計算機視覺中的圖像增強技術(shù)可以改善圖像質(zhì)量。假設(shè)要對一張低光照條件下拍攝的圖像進行增強,以下關(guān)于圖像增強方法的描述,正確的是:()A.簡單地增加圖像的亮度就能有效改善低光照圖像的質(zhì)量B.直方圖均衡化方法總是能夠在不引入噪聲的情況下增強圖像對比度C.基于深度學習的圖像增強方法能夠自適應(yīng)地學習到適合的增強策略D.圖像增強不會改變圖像的原始信息和內(nèi)容4、在計算機視覺中,圖像分割旨在將圖像劃分為不同的區(qū)域,每個區(qū)域具有相似的特征。以下關(guān)于圖像分割的敘述,不正確的是()A.圖像分割可以基于像素的顏色、紋理等特征進行B.深度學習方法在圖像分割中取得了顯著的成果,如全卷積網(wǎng)絡(luò)(FCN)C.圖像分割在醫(yī)學影像分析、自動駕駛場景理解等方面具有重要作用D.圖像分割的結(jié)果總是完美的,能夠準確地將圖像中的所有物體都分割出來5、計算機視覺在人臉識別領(lǐng)域取得了顯著進展。假設(shè)要開發(fā)一個人臉識別系統(tǒng),以下關(guān)于人臉識別技術(shù)的描述,哪一項是不正確的?()A.可以通過提取人臉的幾何特征、紋理特征或深度學習特征進行識別B.人臉識別系統(tǒng)通常需要進行活體檢測,以防止使用照片或視頻等欺詐手段C.大規(guī)模的人臉數(shù)據(jù)集和深度學習模型的結(jié)合,大大提高了人臉識別的準確率D.人臉識別技術(shù)在任何光照條件、姿態(tài)變化和表情變化下都能準確識別,不受這些因素的影響6、計算機視覺中的行人重識別任務(wù)是在不同攝像頭中識別出特定的行人。假設(shè)要在一個大型火車站中尋找一個走失的兒童。以下關(guān)于行人重識別的描述,哪一項是不準確的?()A.可以利用行人的服裝顏色、款式和攜帶物品等特征進行重識別B.深度學習中的度量學習方法可以學習行人的特征表示,提高重識別的準確率C.行人重識別不受行人姿態(tài)變化和攝像頭視角差異的影響D.可以通過構(gòu)建大規(guī)模的行人數(shù)據(jù)集進行訓練,提升模型的泛化能力7、計算機視覺中的工業(yè)檢測任務(wù)需要檢測產(chǎn)品的缺陷和瑕疵。假設(shè)要在生產(chǎn)線上對一批電子產(chǎn)品的外觀進行檢測,要求快速準確地發(fā)現(xiàn)微小的缺陷。以下哪種工業(yè)檢測方法在處理這種高精度要求的任務(wù)時最為適用?()A.機器視覺檢測B.人工目檢C.抽樣檢測D.基于統(tǒng)計的檢測8、計算機視覺在文物保護和數(shù)字化中的應(yīng)用可以幫助記錄和分析文物信息。假設(shè)要對一件古老的雕塑進行三維數(shù)字化和表面紋理分析,以下關(guān)于文物保護計算機視覺應(yīng)用的描述,正確的是:()A.傳統(tǒng)的攝影測量方法在文物數(shù)字化中比基于深度學習的方法更精確B.文物的復雜形狀和表面材質(zhì)對數(shù)字化和分析過程沒有挑戰(zhàn)C.結(jié)合多種成像技術(shù)和計算機視覺算法能夠更全面地獲取文物的信息D.文物保護中的計算機視覺應(yīng)用不需要考慮對文物的非接觸性和無損性要求9、圖像壓縮是為了減少圖像的數(shù)據(jù)量,同時保持可接受的視覺質(zhì)量。假設(shè)我們需要在網(wǎng)絡(luò)上傳輸大量的圖像,以下哪種圖像壓縮標準能夠在保證較高壓縮比的同時,提供較好的圖像質(zhì)量?()A.JPEGB.PNGC.GIFD.BMP10、在計算機視覺的自動駕駛應(yīng)用中,車輛需要準確識別道路標志、交通信號燈和其他車輛的狀態(tài)。對于實時性和準確性要求極高的場景,以下哪種傳感器融合技術(shù)能夠為車輛提供更全面和可靠的環(huán)境感知?()A.攝像頭與激光雷達的融合B.毫米波雷達與超聲波傳感器的融合C.多種攝像頭的融合D.以上都是11、計算機視覺中的目標跟蹤是指在視頻序列中持續(xù)跟蹤特定目標。假設(shè)要跟蹤一個在復雜場景中運動的人物,以下關(guān)于目標跟蹤算法的描述,正確的是:()A.基于卡爾曼濾波的跟蹤算法能夠準確預測目標的運動軌跡,但對目標外觀變化適應(yīng)性差B.基于粒子濾波的跟蹤算法計算復雜度低,適用于實時跟蹤要求高的場景C.基于深度學習的跟蹤算法需要大量的訓練數(shù)據(jù),并且在目標被遮擋時容易丟失D.目標跟蹤算法只要在初始幀中準確檢測到目標,就能夠在后續(xù)幀中一直保持跟蹤的準確性12、在計算機視覺的圖像配準任務(wù)中,將不同視角或時間拍攝的圖像進行對齊,以下哪種變換模型可能適用于具有較大形變的圖像配準?()A.剛性變換B.仿射變換C.投影變換D.非線性變換13、在計算機視覺中,圖像檢索是根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關(guān)的圖像。以下關(guān)于圖像檢索的說法,錯誤的是()A.圖像檢索可以基于圖像的內(nèi)容,如顏色、形狀和紋理等特征B.深度學習方法可以學習到更具語義的圖像表示,提高圖像檢索的準確性C.圖像檢索在電子商務(wù)、數(shù)字圖書館和圖像搜索引擎等領(lǐng)域有廣泛的應(yīng)用D.圖像檢索的性能只取決于圖像特征的提取,與數(shù)據(jù)庫的組織和索引無關(guān)14、在計算機視覺的動作識別任務(wù)中,識別視頻中的人物動作。假設(shè)要識別一段舞蹈視頻中的動作,以下關(guān)于動作識別方法的描述,哪一項是不正確的?()A.可以提取視頻中的時空特征,如光流和運動軌跡,來描述動作B.基于深度學習的方法,如3D卷積神經(jīng)網(wǎng)絡(luò),能夠直接處理視頻數(shù)據(jù),進行動作識別C.動作識別需要考慮動作的速度、幅度和節(jié)奏等特征D.動作識別只適用于簡單的、規(guī)范化的動作,對于復雜的、個性化的動作無法準確識別15、在計算機視覺的圖像分割任務(wù)中,需要將圖像中的不同物體或區(qū)域準確地劃分出來。假設(shè)要對一張包含多個水果的圖像進行精確分割,每個水果的邊界可能不清晰,且存在部分重疊和陰影。以下哪種圖像分割算法在處理這種具有挑戰(zhàn)性的情況時表現(xiàn)更為出色?()A.基于閾值的分割B.基于區(qū)域的分割C.基于邊緣檢測的分割D.基于深度學習的語義分割16、在計算機視覺的視頻監(jiān)控系統(tǒng)中,異常事件檢測是重要功能之一。假設(shè)要在一個倉庫的監(jiān)控視頻中檢測出異常的人員活動或物品移動。以下哪種異常事件檢測方法在處理這種大規(guī)模視頻數(shù)據(jù)時能夠更有效地發(fā)現(xiàn)異常?()A.基于規(guī)則的檢測B.基于統(tǒng)計模型的檢測C.基于深度學習的檢測D.基于人工觀察的檢測17、在計算機視覺的視覺跟蹤任務(wù)中,目標在運動過程中可能會發(fā)生形變、遮擋和光照變化等情況。為了提高跟蹤的穩(wěn)定性和準確性,以下哪種策略可能是有效的?()A.模型更新機制B.多特征融合C.抗遮擋處理D.以上都是18、計算機視覺中的姿態(tài)估計任務(wù),確定物體在空間中的位置和方向。假設(shè)要估計一個機器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計方法的描述,正確的是:()A.基于幾何模型的姿態(tài)估計方法在復雜環(huán)境中總是能夠準確估計姿態(tài)B.深度學習中的端到端姿態(tài)估計網(wǎng)絡(luò)不需要對物體的結(jié)構(gòu)和運動有先驗了解C.姿態(tài)估計的結(jié)果不受相機參數(shù)和拍攝角度的影響D.結(jié)合多種傳感器數(shù)據(jù)和深度學習的方法可以提高姿態(tài)估計的精度和魯棒性19、計算機視覺在無人駕駛中的應(yīng)用需要應(yīng)對各種復雜的環(huán)境和情況。假設(shè)無人駕駛汽車要在惡劣天氣下行駛,以下關(guān)于計算機視覺在無人駕駛中的挑戰(zhàn)的描述,哪一項是不正確的?()A.惡劣天氣會影響圖像的質(zhì)量和清晰度,增加目標檢測和識別的難度B.計算機視覺系統(tǒng)需要與其他傳感器(如雷達和超聲波傳感器)融合,以提高在惡劣天氣下的感知能力C.深度學習模型在惡劣天氣條件下的性能會顯著下降,無法正常工作D.針對惡劣天氣,可以通過數(shù)據(jù)增強和模型優(yōu)化等方法提高計算機視覺系統(tǒng)的魯棒性20、假設(shè)要開發(fā)一個能夠?qū)ξ奈镞M行數(shù)字化保護和修復的計算機視覺系統(tǒng),需要對文物的破損部分進行準確識別和重建。以下哪種技術(shù)在文物修復方面可能具有應(yīng)用潛力?()A.圖像修復算法B.三維重建技術(shù)C.虛擬增強現(xiàn)實技術(shù)D.以上都是二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述計算機視覺中遷移學習的方法和優(yōu)勢。2、(本題5分)計算機視覺中如何進行服裝尺碼測量和款式設(shè)計?3、(本題5分)簡述圖像的幾何變換有哪些及用途。三、分析題(本大題共5個小題,共25分)1、(本題5分)分析某游戲公司的游戲界面設(shè)計,觀察其如何平衡功能性、美觀性和用戶互動性,為玩家提供良好的游戲體驗。2、(本題5分)一款兒童圖書的封面設(shè)計充滿童趣,角色形象生動。請分析該封面設(shè)計如何吸引兒童閱讀,如何與圖書內(nèi)容相呼應(yīng),以及在培養(yǎng)兒童閱讀興趣方面的作用。3、(本題5分)以某幼兒園的宣傳海報設(shè)計為例,分析其可愛的卡通形象、鮮艷的色彩、溫馨的文字如何吸引家長和孩子。4、(本題5分)解析某科技公司的產(chǎn)品說明書設(shè)計,探討其在信息傳達、排版設(shè)計、用戶
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版南京大學與京東集團電商人才培養(yǎng)合作合同4篇
- 2025年度鋼管行業(yè)市場調(diào)研與分析服務(wù)合同
- 二零二五年度企業(yè)廢棄包裝物清運合同模板
- 二零二五年度農(nóng)莊農(nóng)業(yè)保險合同模板
- 2025年度農(nóng)業(yè)科技創(chuàng)新實驗基地租賃合同范本3篇
- 二零二五版內(nèi)參內(nèi)容策劃與制作合同4篇
- 2025年度個人反擔保合同模板(保險業(yè)務(wù)風險防范)
- 二零二五年度泥水工施工技術(shù)創(chuàng)新與推廣合同4篇
- 二零二五年度現(xiàn)代農(nóng)業(yè)科技項目質(zhì)押擔保合同3篇
- 二零二五年度瓷磚電商平臺銷售代理合同2篇
- ppr管件注塑工藝
- 液化氣站其他危險和有害因素辨識及分析
- 建筑工程施工安全管理思路及措施
- 高中語文教學課例《勸學》課程思政核心素養(yǎng)教學設(shè)計及總結(jié)反思
- 中國農(nóng)業(yè)銀行小微企業(yè)信貸業(yè)務(wù)貸后管理辦法規(guī)定
- 初中英語-Unit2 My dream job(writing)教學課件設(shè)計
- 市政道路建設(shè)工程竣工驗收質(zhì)量自評報告
- 優(yōu)秀支行行長推薦材料
- 中國版梅尼埃病診斷指南解讀
- 暨南大學《經(jīng)濟學》考博歷年真題詳解(宏觀經(jīng)濟學部分)
- 藥店員工教育培訓資料
評論
0/150
提交評論