2025屆云南省昆明市官渡區(qū)藝卓中學高三最后一卷數(shù)學試卷含解析_第1頁
2025屆云南省昆明市官渡區(qū)藝卓中學高三最后一卷數(shù)學試卷含解析_第2頁
2025屆云南省昆明市官渡區(qū)藝卓中學高三最后一卷數(shù)學試卷含解析_第3頁
2025屆云南省昆明市官渡區(qū)藝卓中學高三最后一卷數(shù)學試卷含解析_第4頁
2025屆云南省昆明市官渡區(qū)藝卓中學高三最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆云南省昆明市官渡區(qū)藝卓中學高三最后一卷數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線(a>0,b>0)的右焦點為F,若過點F且傾斜角為60°的直線l與雙曲線的右支有且只有一個交點,則此雙曲線的離心率e的取值范圍是()A. B.(1,2), C. D.2.在邊長為1的等邊三角形中,點E是中點,點F是中點,則()A. B. C. D.3.2019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數(shù)字按照任意次序排成一行,拼成一個6位數(shù),則產生的不同的6位數(shù)的個數(shù)為A.96 B.84 C.120 D.3604.設集合則()A. B. C. D.5.函數(shù)在上的圖象大致為()A. B.C. D.6.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.27.為了進一步提升駕駛人交通安全文明意識,駕考新規(guī)要求駕校學員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導交通.現(xiàn)有甲、乙等5名駕校學員按要求分配到三個不同的路口站崗,每個路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種8.過拋物線的焦點F作兩條互相垂直的弦AB,CD,設P為拋物線上的一動點,,若,則的最小值是()A.1 B.2 C.3 D.49.已知函數(shù),當時,恒成立,則的取值范圍為()A. B. C. D.10.用1,2,3,4,5組成不含重復數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個數(shù)字相鄰,則滿足條件的不同五位數(shù)的個數(shù)是()A.48 B.60 C.72 D.12011.空氣質量指數(shù)是反映空氣狀況的指數(shù),指數(shù)值趨小,表明空氣質量越好,下圖是某市10月1日-20日指數(shù)變化趨勢,下列敘述錯誤的是()A.這20天中指數(shù)值的中位數(shù)略高于100B.這20天中的中度污染及以上(指數(shù))的天數(shù)占C.該市10月的前半個月的空氣質量越來越好D.總體來說,該市10月上旬的空氣質量比中旬的空氣質量好12.如圖是一個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,,則______.14.在三棱錐中,,,兩兩垂直且,點為的外接球上任意一點,則的最大值為______.15.正項等比數(shù)列|滿足,且成等差數(shù)列,則取得最小值時的值為_____16.如圖,、分別是雙曲線的左、右焦點,過的直線與雙曲線的兩條漸近線分別交于、兩點,若,,則雙曲線的離心率是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),將的圖象向左移個單位,得到函數(shù)的圖象.(1)若,求的單調區(qū)間;(2)若,的一條對稱軸是,求在的值域.18.(12分)選修4-5:不等式選講已知函數(shù)(Ⅰ)解不等式;(Ⅱ)對及,不等式恒成立,求實數(shù)的取值范圍.19.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項和;(2)若,求數(shù)列的前n項和為.20.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點,SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.21.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為,(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)求的極坐標方程和的直角坐標方程;(Ⅱ)設分別交于兩點(與原點不重合),求的最小值.22.(10分)已知函數(shù)為實數(shù))的圖像在點處的切線方程為.(1)求實數(shù)的值及函數(shù)的單調區(qū)間;(2)設函數(shù),證明時,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率.根據(jù)這個結論可以求出雙曲線離心率的取值范圍.【詳解】已知雙曲線的右焦點為,若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率,,離心率,,故選:.【點睛】本題考查雙曲線的性質及其應用,解題時要注意挖掘隱含條件.2、C【解析】

根據(jù)平面向量基本定理,用來表示,然后利用數(shù)量積公式,簡單計算,可得結果.【詳解】由題可知:點E是中點,點F是中點,所以又所以則故選:C【點睛】本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細心觀察,屬基礎題.3、B【解析】

2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數(shù)共個,其中含有2個10的排列數(shù)共個,所以產生的不同的6位數(shù)的個數(shù)為.故選B.4、C【解析】

直接求交集得到答案.【詳解】集合,則.故選:.【點睛】本題考查了交集運算,屬于簡單題.5、A【解析】

首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關于軸對稱,排除C;而,排除B;,排除D.故選:.【點睛】本題考查函數(shù)圖象的識別,函數(shù)的奇偶性的應用,屬于基礎題.6、A【解析】

設,用表示出,求出的值即可得出答案.【詳解】設由,,.故選:A【點睛】本題考查了向量加法、減法以及數(shù)乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎題.7、C【解析】

先將甲、乙兩人看作一個整體,當作一個元素,再將這四個元素分成3個部分,每一個部分至少一個,再將這3部分分配到3個不同的路口,根據(jù)分步計數(shù)原理可得選項.【詳解】把甲、乙兩名交警看作一個整體,個人變成了4個元素,再把這4個元素分成3部分,每部分至少有1個人,共有種方法,再把這3部分分到3個不同的路口,有種方法,由分步計數(shù)原理,共有種方案。故選:C.【點睛】本題主要考查排列與組合,常常運用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.8、C【解析】

設直線AB的方程為,代入得:,由根與系數(shù)的關系得,,從而得到,同理可得,再利用求得的值,當Q,P,M三點共線時,即可得答案.【詳解】根據(jù)題意,可知拋物線的焦點為,則直線AB的斜率存在且不為0,設直線AB的方程為,代入得:.由根與系數(shù)的關系得,,所以.又直線CD的方程為,同理,所以,所以.故.過點P作PM垂直于準線,M為垂足,則由拋物線的定義可得.所以,當Q,P,M三點共線時,等號成立.故選:C.【點睛】本題考查直線與拋物線的位置關系、焦半徑公式的應用,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意取最值的條件.9、A【解析】

分析可得,顯然在上恒成立,只需討論時的情況即可,,然后構造函數(shù),結合的單調性,不等式等價于,進而求得的取值范圍即可.【詳解】由題意,若,顯然不是恒大于零,故.,則在上恒成立;當時,等價于,因為,所以.設,由,顯然在上單調遞增,因為,所以等價于,即,則.設,則.令,解得,易得在上單調遞增,在上單調遞減,從而,故.故選:A.【點睛】本題考查了不等式恒成立問題,利用函數(shù)單調性是解決本題的關鍵,考查了學生的推理能力,屬于基礎題.10、A【解析】

對數(shù)字分類討論,結合數(shù)字中有且僅有兩個數(shù)字相鄰,利用分類計數(shù)原理,即可得到結論【詳解】數(shù)字出現(xiàn)在第位時,數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個數(shù)字出現(xiàn)在第位時,同理也有個數(shù)字出現(xiàn)在第位時,數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個故滿足條件的不同的五位數(shù)的個數(shù)是個故選【點睛】本題主要考查了排列,組合及簡單計數(shù)問題,解題的關鍵是對數(shù)字分類討論,屬于基礎題。11、C【解析】

結合題意,根據(jù)題目中的天的指數(shù)值,判斷選項中的命題是否正確.【詳解】對于,由圖可知天的指數(shù)值中有個低于,個高于,其中第個接近,第個高于,所以中位數(shù)略高于,故正確.對于,由圖可知天的指數(shù)值中高于的天數(shù)為,即占總天數(shù)的,故正確.對于,由圖可知該市月的前天的空氣質量越來越好,從第天到第天空氣質量越來越差,故錯誤.對于,由圖可知該市月上旬大部分指數(shù)在以下,中旬大部分指數(shù)在以上,所以該市月上旬的空氣質量比中旬的空氣質量好,故正確.故選:【點睛】本題考查了對折線圖數(shù)據(jù)的分析,讀懂題意是解題關鍵,并能運用所學知識對命題進行判斷,本題較為基礎.12、A【解析】

根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【點睛】本題考查三視圖及棱柱的體積,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由已知利用同角三角函數(shù)的基本關系式可求得,的值,由兩角差的正弦公式即可計算得的值.【詳解】,,,,,,,,.故答案為:【點睛】本題主要考查了同角三角函數(shù)的基本關系、兩角差的正弦公式,需熟記公式,屬于基礎題.14、【解析】

先根據(jù)三棱錐的幾何性質,求出外接球的半徑,結合向量的運算,將問題轉化為求球體表面一點到外心距離最大的問題,即可求得結果.【詳解】因為兩兩垂直且,故三棱錐的外接球就是對應棱長為2的正方體的外接球.且外接球的球心為正方體的體對角線的中點,如下圖所示:容易知外接球半徑為.設線段的中點為,故可得,故當取得最大值時,取得最大值.而當在同一個大圓上,且,點與線段在球心的異側時,取得最大值,如圖所示:此時,故答案為:.【點睛】本題考查球體的幾何性質,幾何體的外接球問題,涉及向量的線性運算以及數(shù)量積運算,屬綜合性困難題.15、2【解析】

先由題意列出關于的方程,求得的通項公式,再表示出即可求解.【詳解】解:設公比為,且,時,上式有最小值,故答案為:2.【點睛】本題考查等比數(shù)列、等差數(shù)列的有關性質以及等比數(shù)列求積、求最值的有關運算,中檔題.16、【解析】

根據(jù)三角形中位線證得,結合判斷出垂直平分,由此求得的值,結合求得的值.【詳解】∵,∴為中點,,∵,∴垂直平分,∴,即,∴,,即.故答案為:【點睛】本小題主要考查雙曲線離心率的求法,考查化歸與轉化的數(shù)學思想方法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)增區(qū)間為,減區(qū)間為;(2).【解析】

(1)由題意利用三角函數(shù)圖象變換規(guī)律求得的解析式,然后利用余弦函數(shù)的單調性,得出結論;(2)由題意利用余弦函數(shù)的圖象的對稱性求得,再根據(jù)余弦函數(shù)的定義域和值域,得出結論.【詳解】由題意得(1)向左平移個單位得到,增區(qū)間:解不等式,解得,減區(qū)間:解不等式,解得.綜上可得,的單調增區(qū)間為,減區(qū)間為;(2)由題易知,,因為的一條對稱軸是,所以,,解得,.又因為,所以,即.因為,所以,則,所以在的值域是.【點睛】本題主要考查三角函數(shù)圖象變換規(guī)律,余弦函數(shù)圖象的對稱性,余弦函數(shù)的單調性和值域,屬于中檔題.18、(Ⅰ).(Ⅱ).【解析】

詳解:(Ⅰ)當時,由,解得;當時,不成立;當時,由,解得.所以不等式的解集為.(Ⅱ)因為,所以.由題意知對,,即,因為,所以,解得.【點睛】⑴絕對值不等式解法的基本思路是:去掉絕對值號,把它轉化為一般的不等式求解,轉化的方法一般有:①絕對值定義法;②平方法;③零點區(qū)域法.⑵不等式的恒成立可用分離變量法.若所給的不等式能通過恒等變形使參數(shù)與主元分離于不等式兩端,從而問題轉化為求主元函數(shù)的最值,進而求出參數(shù)范圍.這種方法本質也是求最值.一般有:①為參數(shù))恒成立②為參數(shù))恒成立.19、(1)(2)【解析】

(1)利用等差數(shù)列的通項公式以及等比中項求出公差,從而求出,再利用等比數(shù)列的前項和公式即可求解.(2)由(1)求出,再利用裂項求和法即可求解.【詳解】(1),且,,依次成等比數(shù)列,,即:,,,,,;(2),.【點睛】本題考查了等差數(shù)列、等比數(shù)列的通項公式、等比數(shù)列的前項和公式、裂項求和法,需熟記公式,屬于基礎題.20、(I)證明見解析;(II)1【解析】

(I)過D作DE⊥BC于E,連接SE,根據(jù)勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過點D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計算夾角得到答案.【詳解】(I)過D作DE⊥BC于E,連接SE,根據(jù)角度的垂直關系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根據(jù)余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD?平面SED,故SD⊥BC.(II)過點D作DF⊥SE于F,BC⊥平面SED,DF?平面SED,故DF⊥BC,DF⊥SE,BC∩SE=E,故DF⊥平面SBC,故∠ESD為直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論