版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省楚雄彝族自治州大姚縣第一中學2025屆高三下學期聯(lián)合考試數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一輛郵車從地往地運送郵件,沿途共有地,依次記為,,…(為地,為地).從地出發(fā)時,裝上發(fā)往后面地的郵件各1件,到達后面各地后卸下前面各地發(fā)往該地的郵件,同時裝上該地發(fā)往后面各地的郵件各1件,記該郵車到達,,…各地裝卸完畢后剩余的郵件數(shù)記為.則的表達式為().A. B. C. D.2.已知集合,則()A. B.C. D.3.已知函數(shù)在上單調遞增,則的取值范圍()A. B. C. D.4.已知x,y滿足不等式,且目標函數(shù)z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]5.已知函數(shù),其中,若恒成立,則函數(shù)的單調遞增區(qū)間為()A. B.C. D.6.已知向量,,且,則()A. B. C.1 D.27.下圖是民航部門統(tǒng)計的某年春運期間,六個城市售出的往返機票的平均價格(單位元),以及相比于上一年同期價格變化幅度的數(shù)據(jù)統(tǒng)計圖,以下敘述不正確的是()A.深圳的變化幅度最小,北京的平均價格最高B.天津的往返機票平均價格變化最大C.上海和廣州的往返機票平均價格基本相當D.相比于上一年同期,其中四個城市的往返機票平均價格在增加8.已知雙曲線的焦距為,過左焦點作斜率為1的直線交雙曲線的右支于點,若線段的中點在圓上,則該雙曲線的離心率為()A. B. C. D.9.函數(shù)的部分圖象大致為()A. B.C. D.10.閱讀如圖的程序框圖,運行相應的程序,則輸出的的值為()A. B. C. D.11.年部分省市將實行“”的新高考模式,即語文、數(shù)學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B.C. D.12.已知定義在上的函數(shù)在區(qū)間上單調遞增,且的圖象關于對稱,若實數(shù)滿足,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則________.(填“>”或“=”或“<”).14.函數(shù)的最大值與最小正周期相同,則在上的單調遞增區(qū)間為______.15.已知雙曲線的左、右焦點分別為為雙曲線上任一點,且的最小值為,則該雙曲線的離心率是__________.16.已知是等比數(shù)列,若,,且∥,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,直線不過原點且不平行于坐標軸,與有兩個交點,,線段的中點為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點,延長線段與交于點,四邊形能否為平行四邊形?若能,求此時的斜率,若不能,說明理由.18.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點.(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關系,并給出證明.19.(12分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,,平面平面,為中點.(1)求證:平面;(2)若,求二面角的余弦值大小.20.(12分)在四棱錐中,是等邊三角形,點在棱上,平面平面.(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設直線與平面相交于點,若,求的值.21.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,且,(,且)(1)求數(shù)列的通項公式;(2)證明:當時,22.(10分)在三角形ABC中,角A,B,C的對邊分別為a,b,c,若,角為鈍角,(1)求的值;(2)求邊的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)題意,分析該郵車到第站時,一共裝上的郵件和卸下的郵件數(shù)目,進而計算可得答案.【詳解】解:根據(jù)題意,該郵車到第站時,一共裝上了件郵件,需要卸下件郵件,則,故選:D.【點睛】本題主要考查數(shù)列遞推公式的應用,屬于中檔題.2、B【解析】
先由得或,再計算即可.【詳解】由得或,,,又,.故選:B【點睛】本題主要考查了集合的交集,補集的運算,考查學生的運算求解能力.3、B【解析】
由,可得,結合在上單調遞增,易得,即可求出的范圍.【詳解】由,可得,時,,而,又在上單調遞增,且,所以,則,即,故.故選:B.【點睛】本題考查了三角函數(shù)的單調性的應用,考查了學生的邏輯推理能力,屬于基礎題.4、B【解析】
作出可行域,對t進行分類討論分析目標函數(shù)的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當t≤2時,可行域即為如圖中的△OAM,此時目標函數(shù)z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時可知目標函數(shù)Z=9x+6y在的交點()處取得最大值,此時Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點睛】此題考查線性規(guī)劃,根據(jù)可行域結合目標函數(shù)的最大值的取值范圍求參數(shù)的取值范圍,涉及分類討論思想,關鍵在于熟練掌握截距型目標函數(shù)的最大值最優(yōu)解的處理辦法.5、A【解析】
,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.【點睛】本題考查求正弦型函數(shù)的單調區(qū)間,涉及到恒成立問題,考查學生轉化與化歸的思想,是一道中檔題.6、A【解析】
根據(jù)向量垂直的坐標表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A【點睛】本小題主要考查向量垂直的坐標表示,屬于基礎題.7、D【解析】
根據(jù)條形圖可折線圖所包含的數(shù)據(jù)對選項逐一分析,由此得出敘述不正確的選項.【詳解】對于A選項,根據(jù)折線圖可知深圳的變化幅度最小,根據(jù)條形圖可知北京的平均價格最高,所以A選項敘述正確.對于B選項,根據(jù)折線圖可知天津的往返機票平均價格變化最大,所以B選項敘述正確.對于C選項,根據(jù)條形圖可知上海和廣州的往返機票平均價格基本相當,所以C選項敘述正確.對于D選項,根據(jù)折線圖可知相比于上一年同期,除了深圳外,另外五個城市的往返機票平均價格在增加,故D選項敘述錯誤.故選:D【點睛】本小題主要考查根據(jù)條形圖和折線圖進行數(shù)據(jù)分析,屬于基礎題.8、C【解析】
設線段的中點為,判斷出點的位置,結合雙曲線的定義,求得雙曲線的離心率.【詳解】設線段的中點為,由于直線的斜率是,而圓,所以.由于是線段的中點,所以,而,根據(jù)雙曲線的定義可知,即,即.故選:C【點睛】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關系,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.9、B【解析】
圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負情況。【詳解】,故奇函數(shù),四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B?!军c睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調性、及特殊值。10、C【解析】
根據(jù)給定的程序框圖,計算前幾次的運算規(guī)律,得出運算的周期性,確定跳出循環(huán)時的n的值,進而求解的值,得到答案.【詳解】由題意,,第1次循環(huán),,滿足判斷條件;第2次循環(huán),,滿足判斷條件;第3次循環(huán),,滿足判斷條件;可得的值滿足以3項為周期的計算規(guī)律,所以當時,跳出循環(huán),此時和時的值對應的相同,即.故選:C.【點睛】本題主要考查了循環(huán)結構的程序框圖的計算與輸出問題,其中解答中認真審題,得出程序運行時的計算規(guī)律是解答的關鍵,著重考查了推理與計算能力.11、B【解析】
甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.12、C【解析】
根據(jù)題意,由函數(shù)的圖象變換分析可得函數(shù)為偶函數(shù),又由函數(shù)在區(qū)間上單調遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數(shù)的圖象向左平移個單位長度可得函數(shù)的圖象,由于函數(shù)的圖象關于直線對稱,則函數(shù)的圖象關于軸對稱,即函數(shù)為偶函數(shù),由,得,函數(shù)在區(qū)間上單調遞增,則,得,解得.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用函數(shù)的單調性與奇偶性解不等式,注意分析函數(shù)的奇偶性,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
注意到,故只需比較與1的大小即可.【詳解】由已知,,故有.又由,故有.故答案為:.【點睛】本題考查對數(shù)式比較大小,涉及到換底公式的應用,考查學生的數(shù)學運算能力,是一道中檔題.14、【解析】
利用三角函數(shù)的輔助角公式進行化簡,求出函數(shù)的解析式,結合三角函數(shù)的單調性進行求解即可.【詳解】∵,則函數(shù)的最大值為2,周期,的最大值與最小正周期相同,,得,則,當時,,則當時,得,即函數(shù)在,上的單調遞增區(qū)間為,故答案為:.【點睛】本題考查三角函數(shù)的性質、單調區(qū)間,利用輔助角公式求出函數(shù)的解析式是解決本題的關鍵,同時要注意單調區(qū)間為定義域的一個子區(qū)間.15、【解析】
根據(jù)雙曲線方程,設及,將代入雙曲線方程并化簡可得,由題意的最小值為,結合平面向量數(shù)量積的坐標運算化簡,即可求得的值,進而求得離心率即可.【詳解】設點,,則,即,∵,,,當時,等號成立,∴,∴,∴.故答案為:.【點睛】本題考查了雙曲線與向量的綜合應用,由平面向量數(shù)量積的最值求離心率,屬于中檔題.16、【解析】若,,且∥,則,由是等比數(shù)列,可知公比為..故答案為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)詳見解析;(Ⅱ)能,或.【解析】試題分析:(1)設直線,直線方程與橢圓方程聯(lián)立,根據(jù)韋達定理求根與系數(shù)的關系,并表示直線的斜率,再表示;(2)第一步由(Ⅰ)得的方程為.設點的橫坐標為,直線與橢圓方程聯(lián)立求點的坐標,第二步再整理點的坐標,如果能構成平行四邊形,只需,如果有值,并且滿足,的條件就說明存在,否則不存在.試題解析:解:(1)設直線,,,.∴由得,∴,.∴直線的斜率,即.即直線的斜率與的斜率的乘積為定值.(2)四邊形能為平行四邊形.∵直線過點,∴不過原點且與有兩個交點的充要條件是,由(Ⅰ)得的方程為.設點的橫坐標為.∴由得,即將點的坐標代入直線的方程得,因此.四邊形為平行四邊形當且僅當線段與線段互相平分,即∴.解得,.∵,,,∴當?shù)男甭蕿榛驎r,四邊形為平行四邊形.考點:直線與橢圓的位置關系的綜合應用【一題多解】第一問涉及中點弦,當直線與圓錐曲線相交時,點是弦的中點,(1)知道中點坐標,求直線的斜率,或知道直線斜率求中點坐標的關系,或知道求直線斜率與直線斜率的關系時,也可以選擇點差法,設,,代入橢圓方程,兩式相減,化簡為,兩邊同時除以得,而,,即得到結果,(2)對于用坐標法來解決幾何性質問題,那么就要求首先看出幾何關系滿足什么條件,其次用坐標表示這些幾何關系,本題的關鍵就是如果是平行四邊形那么對角線互相平分,即,分別用方程聯(lián)立求兩個坐標,最后求斜率.18、(1)(2)(3)直線平面,證明見解析【解析】
取中點,連接,則,再由已知證明平面,以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系,求出平面的一個法向量.(1)求出的坐標,由與所成角的余弦值可得直線與平面所成角的正弦值;(2)求出平面的一個法向量,再由兩平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐標,由,結合平面,可得直線平面.【詳解】底面是邊長為2的菱形,,為等邊三角形.取中點,連接,則,為等邊三角形,,又平面平面,且平面平面,平面.以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系.則,,,,1,,,0,,,,,,0,,,,,,,.,,設平面的一個法向量為.由,取,得.(1)證明:設直線與平面所成角為,,則,即直線與平面所成角的正弦值為;(2)設平面的一個法向量為,由,得二面角的余弦值為;(3),,又平面,直線平面.【點睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查推理能力與計算能力,屬于中檔題.19、(1)見解析;(2)【解析】
(1)設中點為,連接、,首先通過條件得出,加,可得,進而可得平面,再加上平面,可得平面平面,則平面;(2)設中點為,連接、,可得平面,加上平面,則可如圖建立直角坐標系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【詳解】(1)證明:設中點為,連接、,為等邊三角形,,,,,,即,,,平面,平面,平面,為的中位線,,平面,平面,平面,、為平面內二相交直線,平面平面,平面DMN,平面;(2)設中點為,連接、為等邊三角形,是等腰三角形,且頂角,,、、共線,,,,,平面平面.平面平面平面,交線為,平面平面.設,則在中,由余弦定理,得:又,,,,,為中點,,建立直角坐標系(如圖),則,,,.,,設平面的法向量為,則,,取,則,,平面的法向量為,,二面角為銳角,二面角的余弦值大小為.【點睛】本題考查面面平行證明線面平行,考查向量法求二面角的大小,考查學生計算能力和空間想象能力,是中檔題.20、(1)證明見解析(2)(3)【解析】
(1)取中點為,連接,由等邊三角形性質可得,再由面面垂直的性質可得,根據(jù)平行直線的性質可得,進而求證;(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設,由點在棱上,可設,即可得到,再求得平面的法向量,進而利用數(shù)量積求解;(3)設,,則,求得,,即可求得點的坐標,再由與平面的法向量垂直,進
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學生畢業(yè)贈言15篇
- 文藝晚會策劃方案范文錦集八篇
- 產品銷售合同六篇
- 團隊精神演講稿(匯編15篇)
- 校本研修工作總結
- 企業(yè)員工工作計劃
- 我的拿手好戲作文500字10篇
- 數(shù)學學習計劃合集10篇
- 護士個人年終述職報告4篇
- 春季開學典禮校長演講稿合集6篇
- 軟裝公司運營計劃書
- 醫(yī)療器械(耗材)項目售后服務能力及方案
- 手術室急救設備
- 2024年黑龍江交通職業(yè)技術學院單招職業(yè)技能測試題庫及答案解析
- 2023版《中國近現(xiàn)代史綱要》課后習題答案
- 投標技術服務和質保期服務計劃
- 安陽鑫龍煤業(yè)(集團)龍山煤業(yè)有限責任公司煤礦礦山地質環(huán)境保護與土地復墾方案
- 重慶市江津區(qū)2023年數(shù)學九年級上冊期末考試試題含解析
- 互聯(lián)網金融(同濟大學)智慧樹知到期末考試答案2024年
- 國家開放大學管理英語4形考任務1-8
- 大學生職業(yè)規(guī)劃汽車維修技師
評論
0/150
提交評論