2025屆陜西省彬州市彬中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第1頁(yè)
2025屆陜西省彬州市彬中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第2頁(yè)
2025屆陜西省彬州市彬中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第3頁(yè)
2025屆陜西省彬州市彬中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第4頁(yè)
2025屆陜西省彬州市彬中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆陜西省彬州市彬中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.我國(guó)南北朝時(shí)的數(shù)學(xué)著作《張邱建算經(jīng)》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問(wèn)各得金幾何?”則在該問(wèn)題中,等級(jí)較高的二等人所得黃金比等級(jí)較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤2.在中,內(nèi)角的平分線交邊于點(diǎn),,,,則的面積是()A. B. C. D.3.如圖所示,正方體的棱,的中點(diǎn)分別為,,則直線與平面所成角的正弦值為()A. B. C. D.4.某高中高三(1)班為了沖刺高考,營(yíng)造良好的學(xué)習(xí)氛圍,向班內(nèi)同學(xué)征集書法作品貼在班內(nèi)墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細(xì)節(jié)決定成敗”,為了弄清“天道酬勤”這一作品是誰(shuí)寫的,班主任對(duì)三人進(jìn)行了問(wèn)話,得到回復(fù)如下:小王說(shuō):“入班即靜”是我寫的;小董說(shuō):“天道酬勤”不是小王寫的,就是我寫的;小李說(shuō):“細(xì)節(jié)決定成敗”不是我寫的.若三人的說(shuō)法有且僅有一人是正確的,則“入班即靜”的書寫者是()A.小王或小李 B.小王 C.小董 D.小李5.已知四棱錐,底面ABCD是邊長(zhǎng)為1的正方形,,平面平面ABCD,當(dāng)點(diǎn)C到平面ABE的距離最大時(shí),該四棱錐的體積為()A. B. C. D.16.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.47.正三棱錐底面邊長(zhǎng)為3,側(cè)棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.8.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》有一問(wèn)題:“今有鱉臑(biēnaò),下廣五尺,無(wú)袤;上袤四尺,無(wú)廣;高七尺.問(wèn)積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺9.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,則該三棱錐外接球的表面積為()A. B. C. D.10.設(shè)是定義在實(shí)數(shù)集上的函數(shù),滿足條件是偶函數(shù),且當(dāng)時(shí),,則,,的大小關(guān)系是()A. B. C. D.11.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點(diǎn)都在球上,則球的表面積為()A. B. C. D.12.將函數(shù)圖象向右平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象關(guān)于直線對(duì)稱,則函數(shù)在上的值域是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,滿足,,且.若任意,成立,則實(shí)數(shù)的取值范圍為__________.14.已知等差數(shù)列滿足,,則的值為________.15.已知實(shí)數(shù)x,y滿足(2x-y)2+4y16.為了抗擊新型冠狀病毒肺炎,某醫(yī)藥公司研究出一種消毒劑,據(jù)實(shí)驗(yàn)表明,該藥物釋放量與時(shí)間的函數(shù)關(guān)系為(如圖所示),實(shí)驗(yàn)表明,當(dāng)藥物釋放量對(duì)人體無(wú)害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對(duì)房間進(jìn)行消毒,則在消毒后至少經(jīng)過(guò)______分鐘人方可進(jìn)入房間.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的右焦點(diǎn)為,離心率為.(1)若,求橢圓的方程;(2)設(shè)直線與橢圓相交于、兩點(diǎn),、分別為線段、的中點(diǎn),若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.18.(12分)選修4—5;不等式選講.已知函數(shù).(1)若的解集非空,求實(shí)數(shù)的取值范圍;(2)若正數(shù)滿足,為(1)中m可取到的最大值,求證:.19.(12分)在平面四邊形中,已知,.(1)若,求的面積;(2)若求的長(zhǎng).20.(12分)已知數(shù)列的前項(xiàng)和為,且點(diǎn)在函數(shù)的圖像上;(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列滿足:,,求的通項(xiàng)公式;(3)在第(2)問(wèn)的條件下,若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;21.(12分)如圖,在三棱柱中,是邊長(zhǎng)為2的菱形,且,是矩形,,且平面平面,點(diǎn)在線段上移動(dòng)(不與重合),是的中點(diǎn).(1)當(dāng)四面體的外接球的表面積為時(shí),證明:.平面(2)當(dāng)四面體的體積最大時(shí),求平面與平面所成銳二面角的余弦值.22.(10分)在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系;曲線C1的普通方程為(x-1)2+y2=1,曲線C2的參數(shù)方程為(θ為參數(shù)).(Ⅰ)求曲線C1和C2的極坐標(biāo)方程:(Ⅱ)設(shè)射線θ=(ρ>0)分別與曲線C1和C2相交于A,B兩點(diǎn),求|AB|的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】設(shè)這十等人所得黃金的重量從大到小依次組成等差數(shù)列則由等差數(shù)列的性質(zhì)得,故選C2、B【解析】

利用正弦定理求出,可得出,然后利用余弦定理求出,進(jìn)而求出,然后利用三角形的面積公式可計(jì)算出的面積.【詳解】為的角平分線,則.,則,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面積為.故選:B.【點(diǎn)睛】本題考查三角形面積的計(jì)算,涉及正弦定理和余弦定理以及三角形面積公式的應(yīng)用,考查計(jì)算能力,屬于中等題.3、C【解析】

以D為原點(diǎn),DA,DC,DD1分別為軸,建立空間直角坐標(biāo)系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,設(shè)正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為2,則,,,取平面的法向量為,設(shè)直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點(diǎn)睛】本題考查了線面角的正弦值的求法,也考查數(shù)形結(jié)合思想和向量法的應(yīng)用,屬于中檔題.4、D【解析】

根據(jù)題意,分別假設(shè)一個(gè)正確,推理出與假設(shè)不矛盾,即可得出結(jié)論.【詳解】解:由題意知,若只有小王的說(shuō)法正確,則小王對(duì)應(yīng)“入班即靜”,而否定小董說(shuō)法后得出:小王對(duì)應(yīng)“天道酬勤”,則矛盾;若只有小董的說(shuō)法正確,則小董對(duì)應(yīng)“天道酬勤”,否定小李的說(shuō)法后得出:小李對(duì)應(yīng)“細(xì)節(jié)決定成敗”,所以剩下小王對(duì)應(yīng)“入班即靜”,但與小王的錯(cuò)誤的說(shuō)法矛盾;若小李的說(shuō)法正確,則“細(xì)節(jié)決定成敗”不是小李的,則否定小董的說(shuō)法得出:小王對(duì)應(yīng)“天道酬勤”,所以得出“細(xì)節(jié)決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.【點(diǎn)睛】本題考查推理證明的實(shí)際應(yīng)用.5、B【解析】

過(guò)點(diǎn)E作,垂足為H,過(guò)H作,垂足為F,連接EF.因?yàn)槠矫鍭BE,所以點(diǎn)C到平面ABE的距離等于點(diǎn)H到平面ABE的距離.設(shè),將表示成關(guān)于的函數(shù),再求函數(shù)的最值,即可得答案.【詳解】過(guò)點(diǎn)E作,垂足為H,過(guò)H作,垂足為F,連接EF.因?yàn)槠矫嫫矫鍭BCD,所以平面ABCD,所以.因?yàn)榈酌鍭BCD是邊長(zhǎng)為1的正方形,,所以.因?yàn)槠矫鍭BE,所以點(diǎn)C到平面ABE的距離等于點(diǎn)H到平面ABE的距離.易證平面平面ABE,所以點(diǎn)H到平面ABE的距離,即為H到EF的距離.不妨設(shè),則,.因?yàn)?,所以,所以,?dāng)時(shí),等號(hào)成立.此時(shí)EH與ED重合,所以,.故選:B.【點(diǎn)睛】本題考查空間中點(diǎn)到面的距離的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意輔助線及面面垂直的應(yīng)用.6、A【解析】

由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個(gè)焦距為,由題意又,則,,,所以離心率,故選:A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題7、D【解析】

由側(cè)棱與底面所成角及底面邊長(zhǎng)求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側(cè)棱與底面所成的角,即=60°,由底面邊長(zhǎng)為3得,∴.正三棱錐外接球球心必在上,設(shè)球半徑為,則由得,解得,∴.故選:D.【點(diǎn)睛】本題考查球體積,考查正三棱錐與外接球的關(guān)系.掌握正棱錐性質(zhì)是解題關(guān)鍵.8、A【解析】

根據(jù)三視圖得出原幾何體的立體圖是一個(gè)三棱錐,將三棱錐補(bǔ)充成一個(gè)長(zhǎng)方體,此長(zhǎng)方體的外接球就是該三棱錐的外接球,由球的表面積公式計(jì)算可得選項(xiàng).【詳解】由三視圖可得,該幾何體是一個(gè)如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長(zhǎng)方體的外接球,所以為的中點(diǎn),設(shè)球半徑為,則,所以外接球的表面積,故選:A.【點(diǎn)睛】本題考查求幾何體的外接球的表面積,關(guān)鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.9、C【解析】

作出三棱錐的實(shí)物圖,然后補(bǔ)成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球?yàn)橥粋€(gè)球,然后計(jì)算出矩形的外接圓直徑,利用公式可計(jì)算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實(shí)物圖如下圖所示:將其補(bǔ)成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點(diǎn)睛】本題考查三棱錐外接球的表面積,解題時(shí)要結(jié)合三視圖作出三棱錐的實(shí)物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進(jìn)行計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.10、C【解析】∵y=f(x+1)是偶函數(shù),∴f(-x+1)=f(x+1),即函數(shù)f(x)關(guān)于x=1對(duì)稱.

∵當(dāng)x≥1時(shí),為減函數(shù),∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,

故選C11、B【解析】

分別取、的中點(diǎn)、,連接、、,利用二面角的定義轉(zhuǎn)化二面角的平面角為,然后分別過(guò)點(diǎn)作平面的垂線與過(guò)點(diǎn)作平面的垂線交于點(diǎn),在中計(jì)算出,再利用勾股定理計(jì)算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點(diǎn)、,連接、、,由于是以為直角等腰直角三角形,為的中點(diǎn),,,且、分別為、的中點(diǎn),所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點(diǎn),同理可知,的外心為點(diǎn),分別過(guò)點(diǎn)作平面的垂線與過(guò)點(diǎn)作平面的垂線交于點(diǎn),則點(diǎn)在平面內(nèi),如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點(diǎn)睛】本題考查球體的表面積,考查二面角的定義,解決本題的關(guān)鍵在于找出球心的位置,同時(shí)考查了計(jì)算能力,屬于中等題.12、D【解析】

由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對(duì)稱性,余弦函數(shù)的值域,求得結(jié)果.【詳解】解:把函數(shù)圖象向右平移個(gè)單位長(zhǎng)度后,可得的圖象;再根據(jù)得到函數(shù)的圖象關(guān)于直線對(duì)稱,,,,函數(shù).在上,,,故,即的值域是,故選:D.【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對(duì)稱性,余弦函數(shù)的值域,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

當(dāng)時(shí),,可得到,再用累乘法求出,再求出,根據(jù)定義求出,再借助單調(diào)性求解.【詳解】解:當(dāng)時(shí),,則,,當(dāng)時(shí),,,,,,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),,故答案為:.【點(diǎn)睛】本題主要考查已知求,累乘法,主要考查計(jì)算能力,屬于中檔題.14、11【解析】

由等差數(shù)列的下標(biāo)和性質(zhì)可得,由即可求出公差,即可求解;【詳解】解:設(shè)等差數(shù)列的公差為,,又因?yàn)?,解得故答案為:【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式及等差數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.15、2【解析】

直接利用柯西不等式得到答案.【詳解】根據(jù)柯西不等式:2x-y2+4y當(dāng)2x-y=2y,即x=328故答案為:2.【點(diǎn)睛】本題考查了柯西不等式求最值,也可以利用均值不等式,三角換元求得答案.16、240【解析】

(1)由時(shí),,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當(dāng)時(shí),,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對(duì)房間進(jìn)行消毒,則在消毒后至少經(jīng)過(guò)分鐘人方可進(jìn)入房間.故答案為:(1)2;(2)40【點(diǎn)睛】本題主要考查了分段函數(shù)的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】

(1)由橢圓的離心率求出、的值,由此可求得橢圓的方程;(2)設(shè)點(diǎn)、,聯(lián)立直線與橢圓的方程,列出韋達(dá)定理,由題意得出,可得出,【詳解】(1)由題意得,,.又因?yàn)?,,所以橢圓的方程為;(2)由,得.設(shè)、,所以,,依題意,,易知,四邊形為平行四邊形,所以.因?yàn)?,,所?即,將其整理為.因?yàn)?,所以?所以,即.【點(diǎn)睛】本題考查橢圓方程的求法和直線與橢圓位置關(guān)系的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化,考查計(jì)算能力,屬于中等題.18、(1);(2)見解析.【解析】試題分析:(1)討論三種情況去絕對(duì)值符號(hào),可得所以,由此得,解得;(2)利用分析法,由(1)知,,所以,因?yàn)?,要證,只需證,即證,只需證即可得結(jié)果.試題解析:(1)去絕對(duì)值符號(hào),可得所以,所以,解得,所以實(shí)數(shù)的取值范圍為.(2)由(1)知,,所以.因?yàn)?,所以要證,只需證,即證,即證.因?yàn)?,所以只需證,因?yàn)?,∴成立,所以解法二:x2+y2=2,x、y∈R+,x+y≥2xy設(shè):證明:x+y-2xy==令,∴原式====當(dāng)時(shí),19、(1);(2).【解析】

(1)在三角形中,利用余弦定理列方程,解方程求得的長(zhǎng),進(jìn)而由三角形的面積公式求得三角形的面積.(2)利用誘導(dǎo)公式求得,進(jìn)而求得,利用兩角差的正弦公式,求得,在三角形中利用正弦定理求得,在三角形中利用余弦定理求得的長(zhǎng).【詳解】(1)在中,,解得,.(2)在中,,..【點(diǎn)睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.20、(1)(2)當(dāng)n為偶數(shù)時(shí),;當(dāng)n為奇數(shù)時(shí),.(3)【解析】

(1)根據(jù),討論與兩種情況,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)利用遞推公式及累加法,即可求得當(dāng)n為奇數(shù)或偶數(shù)時(shí)的通項(xiàng)公式.也可利用數(shù)學(xué)歸納法,先猜想出通項(xiàng)公式,再用數(shù)學(xué)歸納法證明.(3)分類討論,當(dāng)n為奇數(shù)或偶數(shù)時(shí),分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當(dāng)時(shí),,當(dāng)時(shí),也滿足上式.所以.(2)解法一:由(1)可知,即.當(dāng)時(shí),,①當(dāng)時(shí),,所以,②當(dāng)時(shí),,③當(dāng)時(shí),,所以,④……當(dāng)時(shí),n為偶數(shù)當(dāng)時(shí),n為偶數(shù)所以以上個(gè)式子相加,得.又,所以當(dāng)n為偶數(shù)時(shí),.同理,當(dāng)n為奇數(shù)時(shí),,所以,當(dāng)n為奇數(shù)時(shí),.解法二:猜測(cè):當(dāng)n為奇數(shù)時(shí),.猜測(cè):當(dāng)n為偶數(shù)時(shí),.以下用數(shù)學(xué)歸納法證明:,命題成立;假設(shè)當(dāng)時(shí),命題成立;當(dāng)n為奇數(shù)時(shí),,當(dāng)時(shí),n為偶數(shù),由得故,時(shí),命題也成立.綜上可知,當(dāng)n為奇數(shù)時(shí)同理,當(dāng)n為偶數(shù)時(shí),命題仍成立.(3)由(2)可知.①當(dāng)n為偶數(shù)時(shí),,所以隨n的增大而減小從而當(dāng)n為偶數(shù)時(shí),的最大值是.②當(dāng)n為奇數(shù)時(shí),,所以隨n的增大而增大,且.綜上,的最大值是1.因此,若對(duì)于任意的,不等式恒成立,只需,故實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查了累加法求數(shù)列通項(xiàng)公式的應(yīng)用,分類討論奇偶項(xiàng)的通項(xiàng)公式及求和方法,數(shù)學(xué)歸

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論