生成式人工智能的崛起:對美國勞動力市場的暴露、替代和不平等效應進行建模_第1頁
生成式人工智能的崛起:對美國勞動力市場的暴露、替代和不平等效應進行建模_第2頁
生成式人工智能的崛起:對美國勞動力市場的暴露、替代和不平等效應進行建模_第3頁
生成式人工智能的崛起:對美國勞動力市場的暴露、替代和不平等效應進行建模_第4頁
生成式人工智能的崛起:對美國勞動力市場的暴露、替代和不平等效應進行建模_第5頁
已閱讀5頁,還剩66頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

BISWorkingPapersNo1207

TheriseofgenerativeAI:modellingexposure,

substitution,andinequalityeffectsontheUSlabour

market

byRaphaelAuer,DavidK?pfer,Josef?véda

MonetaryandEconomicDepartment

September2024

JELclassification:E24,E51,G21,G28,J23,J24,M48,O30,O33

Keywords:Labourmarket,Artificialintelligence,Employment,Inequality,Automation,ChatGPT,GPT,LLM,Wage,Technology

BISWorkingPapersarewrittenbymembersoftheMonetaryandEconomicDepartmentoftheBankforInternationalSettlements,andfromtimetotimebyothereconomists,andarepublishedbytheBank.Thepapersareonsubjectsoftopicalinterestandaretechnicalincharacter.TheviewsexpressedinthemarethoseoftheirauthorsandnotnecessarilytheviewsoftheBIS.

ThispublicationisavailableontheBISwebsite

()

.

?BankforInternationalSettlements2024.Allrightsreserved.Briefexcerptsmaybereproducedortranslatedprovidedthesourceisstated.

ISSN1020-0959(print)ISSN1682-7678(online)

1

TheriseofgenerativeAI:modellingexposure,substitution,and

inequalityeffectsontheUSlabourmarket*

RaphaelAuertDavidK¨opfer?Josefv′eda§

August21,2024

Abstract

Howexposedisthelabourmarkettoever-advancingAIcapabilities,towhatextentdoesthissubstitutehumanlabour,andhowwillitaffectinequality?Weaddressthesequestionsinasimulationof711USoccupationsclassifiedbytheimportanceandlevelofcognitiveskills.WebaseoursimulationsonthenotionthatAIcanonlyperformskillsthatarewithinitscapabilitiesandinvolvecomputerinteraction.AtlowAIcapabilities,7%ofskillsareexposedtoAIuniformlyacrossthewagespectrum.AtmoderateandhighAIcapabilities,17%and36%ofskillsareexposedonaverage,andupto45%inthehighestwagequartile.Examiningcomplementaryversussubstitution,wemodeltheimpactonsideversuscoreoccupationalskills.Forexample,AIcapableofbookkeepinghelpsdoctorswithadministrativework,freeinguptimeformedicalexaminations,butrisksthejobsofbookkeepers.WefindthatlowAIcapabilitiescomplementallworkers,assideskillsaresimplerthancoreskills.However,asAIcapabilitiesadvance,coreskillsinlower-wagejobsbecomeexposed,threateningsubstitutionandincreasedinequality.IncontrasttotheintuitivenotionthattheriseofAImayharmwhite-collarworkers,wefindthatthoseremainsafelongerastheircoreskillsarehardtoautomate.

JELcodes:E24,E51,G21,G28,J23,J24,M48,O30,O33

Keywords:Labourmarket,Artificialintelligence,Employment,Inequality,Automation,ChatGPT,GPT,LLM,Wage,Technology

*WethankRyanBanerjee,SebastianDoerr,FiorellaDeFiore,FernandoPerez-Cruz,AndrasValko,andseminarparticipantsattheBISforcommentsandsuggestions.WeacknowledgetheuseofGPT4foreditingand

asitanel.lti,erlcieoftheBIS.

?BankforInternationalSettlements,david.koepfer@§BankforInternationalSettlements,josef.sveda@

2

1Introduction

HowwilltheadvancementofgenerativeAIcomplementandsubstitutedifferentkindsofhumanlabour?RecentbreakthroughshaveenabledgenerativeAItomimichumancognitiveabilitiesinmanyfields,includingin“whitecollar”professionssuchaslaw,medicine,orscience.Ongoingadvancesandintegrationofthetechnologyintoday-to-dayapplicationsandworkflowsraiseurgentpolicyquestions.

UnderstandinghowthepotentialevolutionofAIwillcomplementorsubstitutehumanskillsisessentialforshapingpoliciestoensureequitablegrowthandemploymentstability.Theliter-

aturehasfocusedontheoccupation-levelimpactofcurrentAImodels,1

experimentalevidence

ofproductivityimpacts(Noy&Zhang,

2023;

Brynjolfssonetal.,

2023;

Pengetal.,

2023),and

thepotentialforcomplementarityandsubstitutioneffectsofAItechnologyataparticularstate

ofAIdevelopment(Pizzinellietal.,

2023;

Acemoglu&Restrepo,

2019,

2018c,a)

.Exceptforcertaintypesoffreelancers(seee.g.

Webb

2020),thebroaderimpactofAIcapabilitiesonthe

labourmarketyetremainstobedemonstrated.

Inthispaper,wetakeaforward-lookingapproach:weaskthequestionof“whatif”and

examinehowanAIofahypotheticallevelofcapabilitieswastoexpose2

differentoccupations.Toshedthefirstlightonthefutureimpact,webuildaparsimoniousbottom-upquantificationwithaspecialfocusonincomedistribution.

Ouranalysisproceedsintwosteps.Inthefirststep,webuildon

Eloundouetal.

(2023);

Feltenetal.

(2021);

Gmyreketal.

(2023);

Pizzinellietal.

(2023);

Acemoglu

(2024)andmodel

theexposuretothetechnologyasthecapabilitiesofAIincrease

.3

Inthesecondstep,weexaminehowthesedevelopmentscouldcomplementorsubstitutehumanlabourthroughthelensoftheirimpactoncoreandsideskills.

Inthefirststep,wearguethatthenear-termimpactofAIislimiteda)tocomputer-relatedinteractionsandb)bythedifficultyoftheskillsthatAIcansubstitutefor.Inthis,weonlyquantifytheimpactonskillsinvolvinginteractionwithacomputer.We,hence,donottakeintoaccounttheimpactofAIonroboticsthatmaysubstituteforphysicalworkorevensocialinteractions

.4

OurfirstdeparturefromtheliteratureistoemployanunderusedpartoftheO*NETdatabasethatclassifiesskillsbytheirdifficulty.Intuitively,anAIofacertaincapabilitylevelcanonlyperformtasksuptoacorrespondingskilllevel.AsthecapabilitiesofAIadvance,an

1Seei.e

.Webb

(2020);

Feltenetal.

(2021);

Tolanetal.

(2021);

Gmyreketal.

(2023);

Yang

(2022)

2Throughoutthepaper,weusetheterms“expose”and“exposure”inaneutralmanner,toimplythatsomepartsofaskill,task,oroccupationcouldbeenhanced,performed,orotherwisebeaffectedbyanAI.

3Similartotheseapproaches,wetakeapartialequilibriumperspectiveanddonottakeintoaccountthe

interplaybetweenskills,relativewages,humancapitalformationanddirectedtechnologicalchange(Acemoglu

&Restrepo,

2018c)

.

4Thisisinlinewith

Acemoglu

(2024),whoarguesthat“AIisnowhereclosetobeingabletoperformmost

manualorsocialtasks”,andwethusassumethatitcanonlyperformcomputerinteractions.

3

increasingshareofcognitiveskillswillhencebeexposedtothetechnology.5

WenestthisnotionofAIcapabilityandskilldifficultyinaquantitativesimulationof711USoccupationsfromtheO*NETdatabaseclassifiedbytheimportanceandtherequiredlevelofcognitiveskillsthatinvolvecomputerinteractions.ThemodelpredictsthatanAIcapableofsubstitutingforsimplecognitivetasks–suchastheminimalcommunicationskillsrequiredforatruckdriver–willexposearound7%ofallskills.AtlowlevelsofAIcapability,thiseffectholdsuniformlyacrosstheentirewagespectrum,butforheterogeneousreasons.Forlow-incomeworkers,asubstantialshareofcognitivecomputerskillsisexposed,buttheoverallshareoftimespentoncomputerinteractionislow.Forhigh-incomeworkers,onlyasmallshareofcognitivecomputerskillsisexposedbecauseofthelargerskillrequirement.However,theshareoftimespentusingsuchskillsishigher

.6

AsAIcapabilitiesincrease,weobserveaprofounddifferenceinoccupationalexposure:upto45%intheupperquartileofthewagedistributionareexposed,whereastheexposureofthelowestquartileisaround26%.

Whatdoesthismeanfortheincomedistribution?Wenotethatinlinewiththeliterature,“exposure”hasaneutralmeaninginthatsomepartsofaskill,task,orjobcouldbeperformedbyanAI.

Thismayleadtosubstitutionbutcouldalsocomplementviaincreasedproductivity.7

Toshedlightontheseissues,intheseconddeparturefromtheliteratureandstepofoursimulations,weexaminetheextenttowhichAImightcomplementorsubstitutehumanlabour.Wefocusonthedifferentialimpactoncoreversussideoccupationalskills,arguingthatAIwouldtendtocomplementoccupationswherevertheauxiliary(side)skillsnecessaryfortheprofessionarewithinitscapabilities.Forexample,ifAIcanorganisemeetings,billing,orbookkeepingforlawyers,medicaldoctors,orscientists,thisfreesuptimethatcanbespentoncoreactivitiesandthusincreasesproductivity.However,aprofessionmaybeatriskifthecoreactivityitselfcanbeperformedbytheAI.

ThisexercisesuggeststhatAImayinitiallycomplementallprofessions,assideskillsare

5Wetakenopositiononhowfasttheevolutionofthetechnologywillmaterialise.SomehavearguedthatAImaysoonhavedramaticimpactsonthelabourmarket(ie

Korinek&Juelfs

(2022))

.OthersarguethatfutureadvancementofAImaymaterialisemuchslowerthanexpected.Forexample,

Acemoglu

(2024)arguesthat

earlyevidenceisfromeasy-to-learntaskswithclearoutcomes(thatAIcanoptimisefor),whereasmoreprofoundproductivityimpactsinmoresubtlecontextsmaymaterialisemuchslower.

Perez-Cruz&Shin

(2024)arguethat

currentLLMsarelimitedintheirunderstandingofhumaninteractionandhigher-orderbeliefs.

6Fortheseexamples,“simplecognitivetasks”correspondtothoserequiringaskilllevelof2.0intheO*NETdatabase,forexample,theminimumsocialperceptivenessskillsrequiredforpiledriversortheminimumspeakingskillsrequiredforindustrialtruckoperators.“Mediumcognitivetasks”correspondtothoserequiringaskilllevelof3.0,forexample,problem-solvingskillsofmedicalappliancetechniciansortheoperationsmonitoringskillsofregisterednurses.“Highcognitivetasks”correspondtothoserequiringaskilllevelof4.0,forexample,thepersuasionskillsofpsychiatristsortheactivelisteningskillsofairtrafficcontrollers.

7Svanbergetal.

(2024)furthernotethat“exposure”doesnotmeanautomation:theysurveyworkerswith

“end-use”taskstogetasenseoftherequirementsforautomation,andsecond,theymodelthecostofamodelcapableofmeetingtherequirements.Focusingontheautomatabilityofvision,findthatonly23%ofoccupationsthatare“exposed”inthesenseof

Eloundouetal.

(2023);

Feltenetal.

(2021)couldtodaybeautomatedeco

-nomically.Wenotethatourmeasureofexposureismorenuancedthantheonein

Eloundouetal.

(2023);

Felten

etal.

(2021)aswerestricttheimpacttoskillsinvolvingcomputerinteractionandnotonlymodelwhetheraskill

inprinciplecouldbeautomatedbutalsowhetherthecapabilityleveloftheAIissufficientforsuchautomation.

4

generallylessdifficultthancoreskills.Forexample,anAIonlycapableofperformingsimplecognitivetaskshasnegligibleexposuretocoreskills,whereasit,onaverage,exposesaround12%ofsideskills.However,alreadyformoderateAIcapabilities,thereisdivergenceacrossthewagespectrum,withthecorecognitiveskillsofthelow-wageworkersbecomingroughlyasexposedtoAIastheirsideskills.Incontrast,theupperquartileofthewagedistributionstillseesnegligibleexposureofcoreskills(5%),whereassideskillsareexposedsubstantially(27%).

IfAIcapabilitiesarehigh,around25%ofbothsideandcoreskillsofthelowestquartileofthewagedistributionareexposed.Incontrast,only20%ofthecorebutastaggering62%ofthesideskillsofthehighestquartileoftheincomedistributionbecomeexposed.

Onbalance,ourmodellingoftheimpactonsideandcoreskillshencereversesthenotionthat

generativeAImightdecreaseinequalityinthelabourmarket(Noy&Zhang,

2023;

Brynjolfsson

etal.,

2023)

.Despitebeingatechnologythatisexposingwhite-collarjobsmoreintensively,thiseffectisfocusedonthesideskillsoftheirprofessions,whilethecoreskillsarenotinreach

.8

Incontrast,acapableAIwillalsoexposethecoreskillsoflower-incomeworkers,thusthreateningsubstitutionandwideninginequality.

Thebalanceofthispaperisasfollows:werelateourapproachtotheliteratureinSection

Section2.

Next,

Section3

presentsthemethodologydescribingtheevolutionaryimpactofever-improvingAIonoccupations.ItalsoservesasanAIexposuredependentonAI’scapabilities.Thereafter,wesplittheAIexposurebasedoncoreandsideskills

Section4

thatarethenusedtoidentifycomplementarityandsubstitutionaleffectsforindividualoccupations.

Section5

presentsadditionalrobustnessanalysis,while

Section6

concludes.

2Literaturereview

Historically,technologicaladvancementshavebeenmetwithbothoptimismandconcernre-

gardingtheirimplicationsforthelabourmarket(Bessen,

2016)

.TheadventofAIandmachinelearningtechnologies,ingeneral,hasintensifiedthesedebates,withresearchersseekingtoun-derstandhowthesenewtoolscanreshapethelabourmarketandhowtheimpactcandiffer

fromprevioustechnologicaladvancementsinrobotisationorcomputerisation(Autor,

2015)

.

SeveralrecentstudieshavedirectlyaddressedthepotentialofthelatestadvancementsinAItosignificantlyimpactthecurrentstructureofthelabourmarket.

Brynjolfssonetal.

(2018)

arguethatmostoccupationsintheUSincludeatleastsometasksthataresuitableformachinelearningapplications,and

Eloundouetal.

(2023)suggeststhat80%oftheworkforcecouldbe

affectedbyGenerativePredictiveTransformers(GPTs).Whiletheseestimatesarestaggering,

Arntzetal.

(2016)arguethattheactualvulnerabilityofjobstoautomationislowerwhen

consideringthenuancedskillswithinoccupations.Nonetheless,theproliferationofthelatestLLMsseemstobenon-negligent;

Eloundouetal.

(2023)furtherfind19%ofUSworkersinthe

8Ofcourse,oncethecapabilityoftheAIbecomesextremelyhighsuchthatallskillsarewithinreach,thiseffectabates,andallcognitiveworkersareindangerofreplacement.

5

USmayseeatleasthalfoftheirskillsimpactedand

Hatziusetal.

(2023)finds25%ofcurrent

workskillsinUSautomatable.

CurrentAIcapabilities,insomeinstances,fallshortofprofoundreasoningskills(Perez-Cruz

&Shin,

2024)

.However,animportantissueregardshowthefutureevolutionofAIcapabilitiescanenhancelabourproductivityorcrowdoutworkers.RecentexperimentswiththelatestgenerationofAIshowthatitcanhaveapositiveeffectinspecificoccupationswhilereducingdifferencesamongworkerswithvaryingexperiencelevels.

Noy&Zhang

(2023)demonstrated

thattheuseofChatGPTsignificantlyincreasesaverageproductivitymeasuredbytimespentontasksandreducesdifferencesbetweenhigh-andlow-skilledworkers.

Brynjolfssonetal.

(2023)studiedtheintroductionofgenAIassistanttothecustomersupportagentsandfounda

significantlyhighernumberofcompletedtasksthatweremorepronouncedfornoviceandlow-skilledworkers.

Pengetal.

(2023)suggestscoderswithaccesstogenAIarecapableofcompleting

coding-orientedtasksupto55%faster.AItoolscanalsoserveasthetooltodiscoverpotential

improvementsinbusinesssystems(Cockburnetal.,

2018;

Chengetal.,

2022)

.

However,anincreaseinlabourproductivitymeansthatlesshumancapitalisneededto

maintainthesameoutput,whichcouldleadtolayoffsorwagereductions(Acemoglu&Restrepo,

2020)

.Inthiscontext,

Frey&Osborne

(2017)predictedthatupto47%ofUSemploymentis

athighriskofcomputerisation.

Arntzetal.

(2016)howeverusesadifferentmethodologyand

estimatesanimpactofonly9%.Gmyreketal.

(2023)findthatgenAIcouldautomate5.1%of

totalemploymentinhigh-incomecountries,whereaslow-incomecountriesarenotsosusceptible.Thepotentialforaugmentationissimilarlydistributedacrosscountriesrelativetotheirincomelevels,althoughthepotentialtoaugmentismuchlarger(aroundfourtofivetimes).

Noy

&Zhang

(2023)claimthatChatGPTmostlysubstitutesforworkereffortratherthanpurely

complementingworkerskills.

Yang

(2022)alsoshowsthatAIcanpositivelyaffectproductivity

andemploymentbutadverselyaffectstheemploymentoflessknowledgeableworkers.Some

studiesadditionallydebatetheeffectsrelativetogender(Eloundouetal.,

2023;

Webb,

2020;

Gmyreketal.,

2023;

Aldasoroetal.,

2024)

.

Historicalexperiencewithinnovationshowsthatinthelong-term,thedisplacementcanbe

offsetbyanincreaseintherangeofgoodsandservicesoffered,see(Autor,

2015;

Acemoglu

&Restrepo,

2019)

.Forexample,

Bessen

(2016)showsUSlabourdemandhasincreasedfaster

incomputerisedoccupationssince1980,althoughthecomputerisationledtosubstitutionforotheroccupations,shiftingemploymentandrequiringnewskills.

Acemogluetal.

(2022)find

increasingdemandinAI-exposedoccupationsintheUSsince2015.AutomatisationinJapan

andtheUSgeneratedcostsavings,allowinglargeroutputineconomy(Adachietal.,

2024;

Dekle,

2020;

Acemoglu&Restrepo,

2020)thatoutweighedthedisplacementeffectsofhuman

labour.

Yang

(2022)findsthatAItechnologyispositivelyassociatedwithproductivityand

employmentinTaiwan’selectronicsindustryforthe2002–2018period.

Acemoglu&Restrepo

(2019),

Acemoglu&Restrepo

(2018a)and

Acemoglu&Restrepo

(2018c)thenfocusdirectlyon

thedynamicsofdisplacementandreinstatementoflabourduetoautomation.Basedondata

6

fromtheUSsinceWorldWarII,

Acemoglu&Restrepo

(2019)claimthatdisplacementeffects

occurintuitively,buttheyarecounterbalancedbythecreationofnewtasksinwhichlabourhasacomparativeadvantage.Thesethenchangethetaskcontentofproductioninfavouroflabourbecauseofareinstatementeffectfollowedbyariseinthelabourshareandlabourdemand.

Acemoglu&Restrepo

(2019)pointoutthatthesuccessofreinstatementisnotautomatic

.Itratherdependsonadditionalvariablessuchasthesupplyofnewskills,demographics,orlabourmarketinstitutions

.9

Althoughpreviousinnovationsinautomatisationandcomputerisation,onaverage,broughteconomicgrowth,theystillreshapedthelabourmarketandintroducednewchallengesinre-gionallabourmarketstructuresthataffectedlabourdistributionacrosstheskilldistributionofmarkets.

Autor

(2019)documentstheseeffectsusingUSdatashowingthatautomation(to

-getherwithinternationaltrade)ledtotheeliminationofthebulkofnon-collegeoccupations,furtherleadingtodisproportionatepolarisationofurbanlabourmarkets.

Acemoglu&Restrepo

(2022)documentthatbetween50%and70%ofchangesintheUSwagestructureoverthelast

fourdecadesareaccountedforbyworkersspecialisedinroutinetasksinindustriesexperiencingrapidautomation.

Acemoglu&Restrepo

(2020)showindustrialrobotadoptionintheUnited

Stateswasnegativelycorrelatedwithemploymentandwages.Theseexamplespinpointtheimportanceofunderstandingthepotentialeffectsoftechnologicaladvancementstonavigateasmoothtransitiontowardsanewstructureofthelabourmarket.

ThequestionremainshowmuchthenewwaveofautomationwithAIiscomparabletoprevi-oustechnologicaladvancements.Previously,automationexposedpredominantlymanuallabourthroughtheinventionofmachinesandrobots.Thetransitionprocesstorobot-drivenproduc-

tion,therefore,affectedatitsfirststageratherlower-skilledlabour(Acemoglu&Restrepo,

2018b)

.EvolvingAIchallenges,however,cognitivetasksandskillsandcreatesapotentialtoaffectdifferentoccupationsbyeithercomplementingorsubstitutingthem.Earlierworkby

Autor&Dorn

(2013)suggeststhatlow-wageoccupationsfacedhighersubstitutiondueto

computerisation.Incontrast,high-wageoccupationswerecomplementedbytechnology.

Webb

(2020)thenfocusesonthenewerinnovationinAIandstatesitisdirectedathigh-skilledtasks,

effectivelyaffectingthehigher-wagequantiles.Asimilarconclusionisreachedby

Eloundouetal.

(2023)and

Pizzinellietal.

(2023)

.

Webb

(2020)arguesthattheimpactofAIisdifferentfrom

theeffectsofsoftwareinnovation,whichexposedmid-wageoccupations(inlinewith

Michaels

etal.

(2014))

.

Pizzinellietal.

(2023)emphasisehighcomplementarityintheuppertailofthe

earningsdistributionbyAI,leadingtoaproductivityboostinsteadofjobdisplacements.TheeffectsofAIalsodiffergeographically.

Pizzinellietal.

(2023);

Gmyreketal.

(2023);

Albanesi

etal.

(2023)showthatmoredevelopedcountriesaremoreexposedtoAIastheirlabourmarkets

aremoreorientedtocognitivetasks.However,asAIsignificantlyprogresses,researchalsoneeds

toaccountfortheevolutionoftechnologytofullyunderstanditspotentialeffects.Examining

9Inasimilarvein,

Aldasoroetal.

(2024)showinageneralequilibriummodelthattheoutputeffectsofAI

mayprimarilyariseviatheindirectimpactondemandandassociatedchangesinrelativepricesratherthanviathedirectinitialproductivityboostfromAIadoption.

7

theimpactofdevelopingAIthroughthelensofwagedistributionseemstobeadvantageousto

formulatetargetedpolicyresponses(Furman&Seamans,

2019)

.AstheadvancementsinAItechnologyprogress,theirinteractionmightchangerapidly.

3MeasuringAIexposure:dataandmethodology

PredictingtheimpactofAIonthelabourmarketischallenging,astheintegrationofthetechnologyintoreal-lifeapplicationsisstillinitsinfancy,andonlysomesyntheticbenchmarksonthepotentialqualityandefficiencyimprovementsoncertainaspectsofworkareavailable(seei.e.

Tolanetal.

(2021);

Pengetal.

(2023);

Noy&Zhang

(2023))

.Particularly,therapidlyevolvingcapabilitiesofAIareamajorsourceofuncertainty.Inthefaceoftheseuncertainties,weconstructaparsimoniousbottom-upmodelcentredonan“AIcapability”parameter,whichallowsustosimulatetheeffectsofevolvingAI.Themodelisbuiltontheskillandoccupationlevelandlateraggregatedtotheindustryorwage-quantilelevel.

Inthissection,weshowhowweconstructtheAIShareAutomatability(AISA)IndexthatdependsonthesophisticationoftheAI(definedas“AIcapability”above).Thisindexrestsontwomainassumptions:

1.Intheshorttomediumterm,automationwillaffectoccupationalactivitieswithcomputerinteractionasopposedtosocialinteractionsorphysicallabour.

2.Theskillsrequiredforperformingtheoccupationsareheterogeneousintheirdifficultylevel.Foraskilltobeimpactedinacertainoccupation,itsdifficultylevelneedstobewithinthecapabilitiesoftheAI.

WeutilisedatafromO*NETversion27.2andthe2022OccupationalEmploymentandWageStatistics(OEWS)SurveyfromtheUSBureauofLaborStatistics.Thesedatasetsdetailaround800differentoccupations(ofwhichwecanuse711afterjoiningacrosstheskillstablesandemploymentstatistics)across22industries,providingaverageincome,employmentnumbers,andratingsforupto35cognitiveskillsforeachoccupationintermsofrequiredskilllevel(1-6)andimportance(1-5).

Furthermore,thedataincludesdetailedtaskdescriptions10

foreachoccupation(onaverage,wehave24taskdescriptionsforeachofthe711occupations).

Inthedescriptionofourmodel,wewillusesubscriptstodenotethedifferentlevelsofaggregation:thelowestlevelsfortheskill,ofortheoccupationandthehighestaggregationlevelsifortheindustryorwforthewagequantile.TheskilllevelLo,sisdistinctforagivenoccupationoandskills.Forinstance,theoccupationofBiophysicistsrequiresalevelof4.75intheskillmathematics,whiletheimportanceofthisskillIo,sis3.88.

10/dictionary/21.0/text/task_statements.html

(releasenumber21.0)

8

3.1OnlycomputerinteractionisautomatablewithAI

Inthispaper,weonlyexaminetheimpactofAIonautomatingtasksthatrequireskillsinvolvingcomputerinteraction.Jobsperformedoncomputersare,intheshortandmediumrun,muchmorelikelytoincorporateAIapplicationscomparedtothoseinvolvingphysicallabour.Weacknowledgethatalsophysicallabourmay,inthefuture,bepronetoautomationthroughimprovedmachinesandrobotics.However,modellingtheimpactofsuchdevelopmentsisoutofthescopeoftheanalysisathand.Similarly,weexpectsocialinteractiontorequirehigherdegreesofsocialacceptancebeforewidespreadautomationmaterialises.Certainly,cost-effectivenessandimprovedsocialskillsoftheAIwillspeeduptheprocess,yet,asforphysicallabour,weexpectlongertimescales.

Weconstructameasureoftheshareofthetimespentoncomputerinteractionsbasedonabout19,000detailedtaskdescriptionsavailableintheO*NETdatabase.Basedonthede-scriptionsofeachoccupation,weinstructedGPT-4toestimatethetimespentwithi)computerinteraction,ii)socialinteraction,andiii)physicallabour.Theexactpromptisshowninthe

BoxA1,andoneexampleoftaskdescriptionisprovidedtotheChatGPT-4in

TableA1.

Notethatcomputerinteractionrepresentsworkingonacomputerthatcommonlydoesnotincludecommunicationviae-meetingsorothersimilarsocialinteraction.

Ingeneral,ChatGPT-4provesveryhighcomparabilitywithconventionalhuman-basedpro-ceduresforcategorisationpurposes.

Eloundouetal.

(2023)usesbothapproaches(human

-andGPT4-based)todirectlyidentifyoccupationalAIexposure,findingaveryhighcorrelationbe-tweenhumanassessmentsandGPT4-basedself-assessments

.11

Gmyreketal.

(2023)follows

theirapproachemp

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論