版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023屆下關(guān)第一中學(xué)高三第四次統(tǒng)考數(shù)學(xué)試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}2.正項(xiàng)等比數(shù)列中的、是函數(shù)的極值點(diǎn),則()A. B.1 C. D.23.若復(fù)數(shù)是純虛數(shù),則()A.3 B.5 C. D.4.已知雙曲線的左,右焦點(diǎn)分別為,O為坐標(biāo)原點(diǎn),P為雙曲線在第一象限上的點(diǎn),直線PO,分別交雙曲線C的左,右支于另一點(diǎn),且,則雙曲線的離心率為()A. B.3 C.2 D.5.已知為正項(xiàng)等比數(shù)列,是它的前項(xiàng)和,若,且與的等差中項(xiàng)為,則的值是()A.29 B.30 C.31 D.326.已知平面向量滿足與的夾角為,且,則實(shí)數(shù)的值為()A. B. C. D.7.臺球是一項(xiàng)國際上廣泛流行的高雅室內(nèi)體育運(yùn)動,也叫桌球(中國粵港澳地區(qū)的叫法)、撞球(中國臺灣地區(qū)的叫法)控制撞球點(diǎn)、球的旋轉(zhuǎn)等控制母球走位是擊球的一項(xiàng)重要技術(shù),一次臺球技術(shù)表演節(jié)目中,在臺球桌上,畫出如圖正方形ABCD,在點(diǎn)E,F(xiàn)處各放一個目標(biāo)球,表演者先將母球放在點(diǎn)A處,通過擊打母球,使其依次撞擊點(diǎn)E,F(xiàn)處的目標(biāo)球,最后停在點(diǎn)C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長為()A.50cm B.40cm C.50cm D.20cm8.在復(fù)平面內(nèi),復(fù)數(shù)z=i對應(yīng)的點(diǎn)為Z,將向量繞原點(diǎn)O按逆時針方向旋轉(zhuǎn),所得向量對應(yīng)的復(fù)數(shù)是()A. B. C. D.9.設(shè)集合,,則()A. B.C. D.10.已知的垂心為,且是的中點(diǎn),則()A.14 B.12 C.10 D.811.設(shè)是虛數(shù)單位,則()A. B. C. D.12.的展開式中的系數(shù)為()A.-30 B.-40 C.40 D.50二、填空題:本題共4小題,每小題5分,共20分。13.某城市為了解該市甲、乙兩個旅游景點(diǎn)的游客數(shù)量情況,隨機(jī)抽取了這兩個景點(diǎn)20天的游客人數(shù),得到如下莖葉圖:由此可估計(jì),全年(按360天計(jì)算)中,游客人數(shù)在內(nèi)時,甲景點(diǎn)比乙景點(diǎn)多______天.14.已知一個圓錐的底面積和側(cè)面積分別為和,則該圓錐的體積為________15.已知函數(shù)()在區(qū)間上的值小于0恒成立,則的取值范圍是________.16.已知數(shù)列滿足,且恒成立,則的值為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,空間幾何體中,是邊長為2的等邊三角形,,,,平面平面,且平面平面,為中點(diǎn).(1)證明:平面;(2)求二面角平面角的余弦值.18.(12分)甲、乙兩班各派三名同學(xué)參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設(shè)甲班三名同學(xué)答對的概率都是,乙班三名同學(xué)答對的概率分別是,,,且這六名同學(xué)答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機(jī)變量的概率分布和數(shù)學(xué)期望.19.(12分)某企業(yè)對設(shè)備進(jìn)行升級改造,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測一項(xiàng)質(zhì)量指標(biāo)值,該項(xiàng)質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的產(chǎn)品視為合格品,否則視為不合格品,如圖是設(shè)備改造前樣本的頻率分布直方圖,下表是設(shè)備改造后樣本的頻數(shù)分布表.圖:設(shè)備改造前樣本的頻率分布直方圖表:設(shè)備改造后樣本的頻率分布表質(zhì)量指標(biāo)值頻數(shù)2184814162(1)求圖中實(shí)數(shù)的值;(2)企業(yè)將不合格品全部銷毀后,對合格品進(jìn)行等級細(xì)分,質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的定為一等品,每件售價240元;質(zhì)量指標(biāo)值落在區(qū)間或內(nèi)的定為二等品,每件售價180元;其他的合格品定為三等品,每件售價120元,根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.若有一名顧客隨機(jī)購買兩件產(chǎn)品支付的費(fèi)用為(單位:元),求的分布列和數(shù)學(xué)期望.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若點(diǎn)在曲線上,點(diǎn)在曲線上,求的最小值及此時點(diǎn)的坐標(biāo).21.(12分)為了實(shí)現(xiàn)中華民族偉大復(fù)興之夢,把我國建設(shè)成為富強(qiáng)民主文明和諧美麗的社會主義現(xiàn)代化強(qiáng)國,黨和國家為勞動者開拓了寬廣的創(chuàng)造性勞動的舞臺.借此“東風(fēng)”,某大型現(xiàn)代化農(nóng)場在種植某種大棚有機(jī)無公害的蔬菜時,為創(chuàng)造更大價值,提高畝產(chǎn)量,積極開展技術(shù)創(chuàng)新活動.該農(nóng)場采用了延長光照時間和降低夜間溫度兩種不同方案.為比較兩種方案下產(chǎn)量的區(qū)別,該農(nóng)場選取了40間大棚(每間一畝),分成兩組,每組20間進(jìn)行試點(diǎn).第一組采用延長光照時間的方案,第二組采用降低夜間溫度的方案.同時種植該蔬菜一季,得到各間大棚產(chǎn)量數(shù)據(jù)信息如下圖:(1)如果你是該農(nóng)場的負(fù)責(zé)人,在只考慮畝產(chǎn)量的情況下,請根據(jù)圖中的數(shù)據(jù)信息,對于下一季大棚蔬菜的種植,說出你的決策方案并說明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長光照時間的方案,光照設(shè)備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設(shè)備的每年成本為0.2千元/畝.已知該農(nóng)場共有大棚100間(每間1畝),農(nóng)場種植的該蔬菜每年產(chǎn)出兩次,且該蔬菜市場的收購均價為1千元/千斤.根據(jù)題中所給數(shù)據(jù),用樣本估計(jì)總體,請計(jì)算在兩種不同的方案下,種植該蔬菜一年的平均利潤;(3)農(nóng)場根據(jù)以往該蔬菜的種植經(jīng)驗(yàn),認(rèn)為一間大棚畝產(chǎn)量超過5.25千斤為增產(chǎn)明顯.在進(jìn)行夜間降溫試點(diǎn)的20間大棚中隨機(jī)抽取3間,記增產(chǎn)明顯的大棚間數(shù)為,求的分布列及期望.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),為實(shí)數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線與曲線交于,兩點(diǎn),線段的中點(diǎn)為.(1)求線段長的最小值;(2)求點(diǎn)的軌跡方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點(diǎn)睛】本題主要考查集合的交集運(yùn)算,屬于基礎(chǔ)題.2.B【解析】
根據(jù)可導(dǎo)函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【詳解】解:依題意、是函數(shù)的極值點(diǎn),也就是的兩個根∴又是正項(xiàng)等比數(shù)列,所以∴.故選:B【點(diǎn)睛】本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.3.C【解析】
先由已知,求出,進(jìn)一步可得,再利用復(fù)數(shù)模的運(yùn)算即可【詳解】由z是純虛數(shù),得且,所以,.因此,.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法、復(fù)數(shù)模的運(yùn)算,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.4.D【解析】
本道題結(jié)合雙曲線的性質(zhì)以及余弦定理,建立關(guān)于a與c的等式,計(jì)算離心率,即可.【詳解】結(jié)合題意,繪圖,結(jié)合雙曲線性質(zhì)可以得到PO=MO,而,結(jié)合四邊形對角線平分,可得四邊形為平行四邊形,結(jié)合,故對三角形運(yùn)用余弦定理,得到,而結(jié)合,可得,,代入上式子中,得到,結(jié)合離心率滿足,即可得出,故選D.【點(diǎn)睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.5.B【解析】
設(shè)正項(xiàng)等比數(shù)列的公比為q,運(yùn)用等比數(shù)列的通項(xiàng)公式和等差數(shù)列的性質(zhì),求出公比,再由等比數(shù)列的求和公式,計(jì)算即可得到所求.【詳解】設(shè)正項(xiàng)等比數(shù)列的公比為q,則a4=16q3,a7=16q6,a4與a7的等差中項(xiàng)為,即有a4+a7=,即16q3+16q6,=,解得q=(負(fù)值舍去),則有S5===1.故選C.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)和求和公式的運(yùn)用,同時考查等差數(shù)列的性質(zhì),考查運(yùn)算能力,屬于中檔題.6.D【解析】
由已知可得,結(jié)合向量數(shù)量積的運(yùn)算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,向量垂直的應(yīng)用,考查計(jì)算求解能力,屬于基礎(chǔ)題.7.D【解析】
過點(diǎn)做正方形邊的垂線,如圖,設(shè),利用直線三角形中的邊角關(guān)系,將用表示出來,根據(jù),列方程求出,進(jìn)而可得正方形的邊長.【詳解】過點(diǎn)做正方形邊的垂線,如圖,設(shè),則,,則,因?yàn)?,則,整理化簡得,又,得,.即該正方形的邊長為.故選:D.【點(diǎn)睛】本題考查直角三角形中的邊角關(guān)系,關(guān)鍵是要構(gòu)造直角三角形,是中檔題.8.A【解析】
由復(fù)數(shù)z求得點(diǎn)Z的坐標(biāo),得到向量的坐標(biāo),逆時針旋轉(zhuǎn),得到向量的坐標(biāo),則對應(yīng)的復(fù)數(shù)可求.【詳解】解:∵復(fù)數(shù)z=i(i為虛數(shù)單位)在復(fù)平面中對應(yīng)點(diǎn)Z(0,1),
∴=(0,1),將繞原點(diǎn)O逆時針旋轉(zhuǎn)得到,
設(shè)=(a,b),,則,即,
又,解得:,∴,對應(yīng)復(fù)數(shù)為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.9.A【解析】
解出集合,利用交集的定義可求得集合.【詳解】因?yàn)?,又,所?故選:A.【點(diǎn)睛】本題考查交集的計(jì)算,同時也考查了一元二次不等式的求解,考查計(jì)算能力,屬于基礎(chǔ)題.10.A【解析】
由垂心的性質(zhì),得到,可轉(zhuǎn)化,又即得解.【詳解】因?yàn)闉榈拇剐?,所以,所以,而,所以,因?yàn)槭堑闹悬c(diǎn),所以.故選:A【點(diǎn)睛】本題考查了利用向量的線性運(yùn)算和向量的數(shù)量積的運(yùn)算率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.11.A【解析】
利用復(fù)數(shù)的乘法運(yùn)算可求得結(jié)果.【詳解】由復(fù)數(shù)的乘法法則得.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.12.C【解析】
先寫出的通項(xiàng)公式,再根據(jù)的產(chǎn)生過程,即可求得.【詳解】對二項(xiàng)式,其通項(xiàng)公式為的展開式中的系數(shù)是展開式中的系數(shù)與的系數(shù)之和.令,可得的系數(shù)為;令,可得的系數(shù)為;故的展開式中的系數(shù)為.故選:C.【點(diǎn)睛】本題考查二項(xiàng)展開式中某一項(xiàng)系數(shù)的求解,關(guān)鍵是對通項(xiàng)公式的熟練使用,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.72【解析】
根據(jù)給定的莖葉圖,得到游客人數(shù)在內(nèi)時,甲景點(diǎn)共有7天,乙景點(diǎn)共有3天,進(jìn)而求得全年中,甲景點(diǎn)比乙景點(diǎn)多的天數(shù),得到答案.【詳解】由題意,根據(jù)給定的莖葉圖可得,在隨機(jī)抽取了這兩個景點(diǎn)20天的游客人數(shù)中,游客人數(shù)在內(nèi)時,甲景點(diǎn)共有7天,乙景點(diǎn)共有3天,所以在全年)中,游客人數(shù)在內(nèi)時,甲景點(diǎn)比乙景點(diǎn)多天.故答案為:.【點(diǎn)睛】本題主要考查了莖葉圖的應(yīng)用,其中解答中熟記莖葉圖的基本知識,合理推算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.14.【解析】
依據(jù)圓錐的底面積和側(cè)面積公式,求出底面半徑和母線長,再根據(jù)勾股定理求出圓錐的高,最后利用圓錐的體積公式求出體積?!驹斀狻吭O(shè)圓錐的底面半徑為,母線長為,高為,所以有解得,故該圓錐的體積為?!军c(diǎn)睛】本題主要考查圓錐的底面積、側(cè)面積和體積公式的應(yīng)用。15.【解析】
首先根據(jù)的取值范圍,求得的取值范圍,由此求得函數(shù)的值域,結(jié)合區(qū)間上的值小于0恒成立列不等式組,解不等式組求得的取值范圍.【詳解】由于,所以,由于區(qū)間上的值小于0恒成立,所以().所以,由于,所以,由于,所以令得.所以的取值范圍是.故答案為:【點(diǎn)睛】本小題主要考查三角函數(shù)值域的求法,考查三角函數(shù)值恒小于零的問題的求解,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.16.【解析】
易得,所以是等差數(shù)列,再利用等差數(shù)列的通項(xiàng)公式計(jì)算即可.【詳解】由已知,,因,所以,所以數(shù)列是以為首項(xiàng),3為公差的等差數(shù)列,故,所以.故答案為:【點(diǎn)睛】本題考查由遞推數(shù)列求數(shù)列中的某項(xiàng),考查學(xué)生等價轉(zhuǎn)化的能力,是一道容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】
(1)分別取,的中點(diǎn),,連接,,,,,要證明平面,只需證明面∥面即可.(2)以點(diǎn)為原點(diǎn),以為軸,以為軸,以為軸,建立空間直角坐標(biāo)系,分別計(jì)算面的法向量,面的法向量可取,并判斷二面角為銳角,再利用計(jì)算即可.【詳解】(1)證明:分別取,的中點(diǎn),,連接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以點(diǎn)為原點(diǎn),以為軸,以為軸,以為軸,建立如圖所示空間直角坐標(biāo)系由面,所以面的法向量可取,點(diǎn),點(diǎn),點(diǎn),,,設(shè)面的法向量,所以,取,二面角的平面角為,則為銳角.所以【點(diǎn)睛】本題考查由面面平行證明線面平行以及向量法求二面角的余弦值,考查學(xué)生的運(yùn)算能力,在做此類題時,一定要準(zhǔn)確寫出點(diǎn)的坐標(biāo).18.(1)(2)分布列見解析,期望為20【解析】
利用相互獨(dú)立事件概率公式求解即可;由題意知,隨機(jī)變量可能的取值為0,10,20,30,分別求出對應(yīng)的概率,列出分布列并代入數(shù)學(xué)期望公式求解即可.【詳解】(1)由相互獨(dú)立事件概率公式可得,(2)由題意知,隨機(jī)變量可能的取值為0,10,20,30.,,,,所以,的概率分布列為0102030所以數(shù)學(xué)期望.【點(diǎn)睛】本題考查相互獨(dú)立事件概率公式和離散型隨機(jī)變量的分布列及其數(shù)學(xué)期望;考查運(yùn)算求解能力;確定隨機(jī)變量可能的取值,求出對應(yīng)的概率是求解本題的關(guān)鍵;屬于中檔題、??碱}型.19.(1)(2)詳見解析【解析】
(1)由頻率分布直方圖中所有頻率(小矩形面積)之和為1可計(jì)算出值;(2)由頻數(shù)分布表知一等品、二等品、三等品的概率分別為.,選2件產(chǎn)品,支付的費(fèi)用的所有取值為240,300,360,420,480,由相互獨(dú)立事件的概率公式分別計(jì)算出概率,得概率分布列,由公式計(jì)算出期望.【詳解】解:(1)據(jù)題意,得所以(2)據(jù)表1分析知,從所有產(chǎn)品中隨機(jī)抽一件是一等品、二等品、三等品的概率分別為.隨機(jī)變量的所有取值為240,300,360,420,480.隨機(jī)變量的分布列為240300360420480所以(元)【點(diǎn)睛】本題考查頻率分布直方圖,頻數(shù)分布表,考查隨機(jī)變量的概率分布列和數(shù)學(xué)期望,解題時掌握性質(zhì):頻率分布直方圖中所有頻率和為1.本題考查學(xué)生的數(shù)據(jù)處理能力,屬于中檔題.20.(1);(2)最小值為,此時【解析】
(1)消去曲線參數(shù)方程的參數(shù),求得曲線的普通方程.利用極坐標(biāo)和直角坐標(biāo)相互轉(zhuǎn)化公式,求得曲線的直角坐標(biāo)方程.(2)設(shè)出的坐標(biāo),結(jié)合點(diǎn)到直線的距離公式以及三角函數(shù)最值的求法,求得的最小值及此時點(diǎn)的坐標(biāo).【詳解】(1)消去得,曲線的普通方程是:;把,代入得,曲線的直角坐標(biāo)方程是(2)設(shè),的最小值就是點(diǎn)到直線的最小距離.設(shè)在時,,是最小值,此時,所以,所求最小值為,此時【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程,考查利用圓錐曲線的參數(shù)求最值,屬于中檔題.21.(1)見解析;(2)(i)該農(nóng)場若采用延長光照時間的方法,預(yù)計(jì)每年的利潤為426千元;(ii)若采用降低
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘭州科技職業(yè)學(xué)院《循證護(hù)理實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西科技師范大學(xué)《商務(wù)智能與數(shù)據(jù)挖掘Ⅰ》2023-2024學(xué)年第一學(xué)期期末試卷
- 吉首大學(xué)《輕量化平臺開發(fā)》2023-2024學(xué)年第一學(xué)期期末試卷
- 【物理】重力 同步練習(xí)+2024-2025學(xué)年人教版物理八年級下冊
- 黑龍江幼兒師范高等??茖W(xué)?!董h(huán)境3S技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶郵電大學(xué)《公體戶外運(yùn)動》2023-2024學(xué)年第一學(xué)期期末試卷
- 中央音樂學(xué)院《中醫(yī)大健康》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江農(nóng)林大學(xué)暨陽學(xué)院《汽車電氣設(shè)備》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州食品工程職業(yè)學(xué)院《德國史專題》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)2024-2025學(xué)年度勞動技能大賽方案
- 中考物理總復(fù)習(xí)《力學(xué)的綜合計(jì)算》專項(xiàng)檢測卷(帶答案)
- AQ 1029-2019 煤礦安全監(jiān)控系統(tǒng)及檢測儀器使用管理規(guī)范
- 太陽能驅(qū)動的污水處理技術(shù)研究與應(yīng)用
- 未成年旅游免責(zé)協(xié)議書
- 預(yù)防保健科主任競聘課件
- 團(tuán)隊(duì)成員介紹
- 水泵行業(yè)銷售人員工作匯報
- 《流感科普宣教》課件
- 離職分析報告
- 春節(jié)家庭用電安全提示
- 醫(yī)療糾紛預(yù)防和處理?xiàng)l例通用課件
評論
0/150
提交評論