版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆廣東增城仙村中學(xué)高三第二次調(diào)研數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知不同直線、與不同平面、,且,,則下列說(shuō)法中正確的是()A.若,則 B.若,則C.若,則 D.若,則2.已知命題:“關(guān)于的方程有實(shí)根”,若為真命題的充分不必要條件為,則實(shí)數(shù)的取值范圍是()A. B. C. D.3.如圖,在平行四邊形中,為對(duì)角線的交點(diǎn),點(diǎn)為平行四邊形外一點(diǎn),且,,則()A. B.C. D.4.已知,是函數(shù)圖像上不同的兩點(diǎn),若曲線在點(diǎn),處的切線重合,則實(shí)數(shù)的最小值是()A. B. C. D.15.趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個(gè)全等的三角形與中間的一個(gè)小正六邊形組成的一個(gè)大正六邊形,設(shè),若在大正六邊形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正六邊形的概率為()A. B.C. D.6.某公園新購(gòu)進(jìn)盆錦紫蘇、盆虞美人、盆郁金香,盆盆栽,現(xiàn)將這盆盆栽擺成一排,要求郁金香不在兩邊,任兩盆錦紫蘇不相鄰的擺法共()種A. B. C. D.7.己知全集為實(shí)數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)8.已知橢圓:的左、右焦點(diǎn)分別為,,過(guò)的直線與軸交于點(diǎn),線段與交于點(diǎn).若,則的方程為()A. B. C. D.9.已知拋物線:的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),直線與拋物線交于,兩點(diǎn),若,則為()A. B.40 C.16 D.10.已知函數(shù),,若對(duì)任意,總存在,使得成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.11.雙曲線:(),左焦點(diǎn)到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.12.已知橢圓的焦點(diǎn)分別為,,其中焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓與拋物線的兩個(gè)交點(diǎn)連線正好過(guò)點(diǎn),則橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.關(guān)于函數(shù)有下列四個(gè)命題:①函數(shù)在上是增函數(shù);②函數(shù)的圖象關(guān)于中心對(duì)稱;③不存在斜率小于且與函數(shù)的圖象相切的直線;④函數(shù)的導(dǎo)函數(shù)不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號(hào))14.在的二項(xiàng)展開(kāi)式中,x的系數(shù)為_(kāi)_______.(用數(shù)值作答)15.函數(shù)的定義域?yàn)?,其圖象如圖所示.函數(shù)是定義域?yàn)榈钠婧瘮?shù),滿足,且當(dāng)時(shí),.給出下列三個(gè)結(jié)論:①;②函數(shù)在內(nèi)有且僅有個(gè)零點(diǎn);③不等式的解集為.其中,正確結(jié)論的序號(hào)是________.16.已知均為非負(fù)實(shí)數(shù),且,則的取值范圍為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在,角、、所對(duì)的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線,求的面積.18.(12分)已知的三個(gè)內(nèi)角所對(duì)的邊分別為,向量,,且.(1)求角的大??;(2)若,求的值19.(12分)如圖,在正三棱柱中,,,分別為,的中點(diǎn).(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.20.(12分)已知的內(nèi)角,,的對(duì)邊分別為,,,.(1)若,證明:.(2)若,,求的面積.21.(12分)已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).(1)求曲線的直角坐標(biāo)方程與直線的普通方程;(2)已知點(diǎn),直線與曲線交于、兩點(diǎn),求.22.(10分)已知橢圓的離心率為,且過(guò)點(diǎn).(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)是橢圓上且不在軸上的一個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),過(guò)右焦點(diǎn)作的平行線交橢圓于、兩個(gè)不同的點(diǎn),求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)空間中平行關(guān)系、垂直關(guān)系的相關(guān)判定和性質(zhì)可依次判斷各個(gè)選項(xiàng)得到結(jié)果.【詳解】對(duì)于,若,則可能為平行或異面直線,錯(cuò)誤;對(duì)于,若,則可能為平行、相交或異面直線,錯(cuò)誤;對(duì)于,若,且,由面面垂直的判定定理可知,正確;對(duì)于,若,只有當(dāng)垂直于的交線時(shí)才有,錯(cuò)誤.故選:.【點(diǎn)睛】本題考查空間中線面關(guān)系、面面關(guān)系相關(guān)命題的辨析,關(guān)鍵是熟練掌握空間中的平行關(guān)系與垂直關(guān)系的相關(guān)命題.2、B【解析】命題p:,為,又為真命題的充分不必要條件為,故3、D【解析】
連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運(yùn)算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點(diǎn)睛】本題考查向量的線性運(yùn)算問(wèn)題,屬于基礎(chǔ)題4、B【解析】
先根據(jù)導(dǎo)數(shù)的幾何意義寫出在兩點(diǎn)處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關(guān)系樹,從而得出,令函數(shù),結(jié)合導(dǎo)數(shù)求出最小值,即可選出正確答案.【詳解】解:當(dāng)時(shí),,則;當(dāng)時(shí),則.設(shè)為函數(shù)圖像上的兩點(diǎn),當(dāng)或時(shí),,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設(shè)則,由可得則當(dāng)時(shí),的最大值為.則在上單調(diào)遞減,則.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點(diǎn)是求出和的函數(shù)關(guān)系式.本題的易錯(cuò)點(diǎn)是計(jì)算.5、D【解析】
設(shè),則,小正六邊形的邊長(zhǎng)為,利用余弦定理可得大正六邊形的邊長(zhǎng)為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長(zhǎng)為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長(zhǎng)為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點(diǎn)取自小正六邊形的概率.故選:D.【點(diǎn)睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.6、B【解析】
間接法求解,兩盆錦紫蘇不相鄰,被另3盆隔開(kāi)有,扣除郁金香在兩邊有,即可求出結(jié)論.【詳解】使用插空法,先排盆虞美人、盆郁金香有種,然后將盆錦紫蘇放入到4個(gè)位置中有種,根據(jù)分步乘法計(jì)數(shù)原理有,扣除郁金香在兩邊,排盆虞美人、盆郁金香有種,再將盆錦紫蘇放入到3個(gè)位置中有,根據(jù)分步計(jì)數(shù)原理有,所以共有種.故選:B.【點(diǎn)睛】本題考查排列應(yīng)用問(wèn)題、分步乘法計(jì)數(shù)原理,不相鄰問(wèn)題插空法是解題的關(guān)鍵,屬于中檔題.7、D【解析】
求解一元二次不等式化簡(jiǎn)A,求解對(duì)數(shù)不等式化簡(jiǎn)B,然后利用補(bǔ)集與交集的運(yùn)算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【點(diǎn)睛】本題考查了交、并、補(bǔ)集的混合運(yùn)算,考查了對(duì)數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.8、D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點(diǎn)睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.9、D【解析】
如圖所示,過(guò)分別作于,于,利用和,聯(lián)立方程組計(jì)算得到答案.【詳解】如圖所示:過(guò)分別作于,于.,則,根據(jù)得到:,即,根據(jù)得到:,即,解得,,故.故選:.【點(diǎn)睛】本題考查了拋物線中弦長(zhǎng)問(wèn)題,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.10、C【解析】
將函數(shù)解析式化簡(jiǎn),并求得,根據(jù)當(dāng)時(shí)可得的值域;由函數(shù)在上單調(diào)遞減可得的值域,結(jié)合存在性成立問(wèn)題滿足的集合關(guān)系,即可求得的取值范圍.【詳解】依題意,則,當(dāng)時(shí),,故函數(shù)在上單調(diào)遞增,當(dāng)時(shí),;而函數(shù)在上單調(diào)遞減,故,則只需,故,解得,故實(shí)數(shù)的取值范圍為.故選:C.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,恒成立與存在性成立問(wèn)題的綜合應(yīng)用,屬于中檔題.11、B【解析】
首先求得雙曲線的一條漸近線方程,再利用左焦點(diǎn)到漸近線的距離為2,列方程即可求出,進(jìn)而求出漸近線的方程.【詳解】設(shè)左焦點(diǎn)為,一條漸近線的方程為,由左焦點(diǎn)到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點(diǎn)睛】本題考查雙曲線的漸近線的方程,考查了點(diǎn)到直線的距離公式,屬于中檔題.12、B【解析】
根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計(jì)算能力,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、①②③【解析】
由單調(diào)性、對(duì)稱性概念、導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與極值的關(guān)系進(jìn)行判斷.【詳解】函數(shù)的定義域是,由于,在上遞增,∴函數(shù)在上是遞增,①正確;,∴函數(shù)的圖象關(guān)于中心對(duì)稱,②正確;,時(shí)取等號(hào),∴③正確;,設(shè),則,顯然是即的極小值點(diǎn),④錯(cuò)誤.故答案為:①②③.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性、對(duì)稱性,考查導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與極值,解題時(shí)按照相關(guān)概念判斷即可,屬于中檔題.14、-40【解析】
由題意,可先由公式得出二項(xiàng)展開(kāi)式的通項(xiàng),再令10-3r=1,得r=3即可得出x項(xiàng)的系數(shù)【詳解】的二項(xiàng)展開(kāi)式的通項(xiàng)公式為,r=0,1,2,3,4,5,令,所以的二項(xiàng)展開(kāi)式中x項(xiàng)的系數(shù)為.故答案為:-40.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,解題關(guān)鍵是靈活掌握二項(xiàng)式展開(kāi)式通項(xiàng)的公式,屬于基礎(chǔ)題.15、①③【解析】
利用奇函數(shù)和,得出函數(shù)的周期為,由圖可直接判斷①;利用賦值法求得,結(jié)合,進(jìn)而可判斷函數(shù)在內(nèi)的零點(diǎn)個(gè)數(shù),可判斷②的正誤;采用換元法,結(jié)合圖象即可得解,可判斷③的正誤.綜合可得出結(jié)論.【詳解】因?yàn)楹瘮?shù)是奇函數(shù),所以,又,所以,即,所以,函數(shù)的周期為.對(duì)于①,由于函數(shù)是上的奇函數(shù),所以,,故①正確;對(duì)于②,,令,可得,得,所以,函數(shù)在區(qū)間上的零點(diǎn)為和.因?yàn)楹瘮?shù)的周期為,所以函數(shù)在內(nèi)有個(gè)零點(diǎn),分別是、、、、,故②錯(cuò)誤;對(duì)于③,令,則需求的解集,由圖象可知,,所以,故③正確.故答案為:①③.【點(diǎn)睛】本題考查函數(shù)的圖象與性質(zhì),涉及奇偶性、周期性和零點(diǎn)等知識(shí)點(diǎn),考查學(xué)生分析問(wèn)題的能力和數(shù)形結(jié)合能力,屬于中等題.16、【解析】
設(shè),可得的取值范圍,分別利用基本不等式和,把用代換,結(jié)合的取值范圍求關(guān)于的二次函數(shù)的最值即可求解.【詳解】因?yàn)?,令,則,因?yàn)?當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,,即,令則函數(shù)的對(duì)稱軸為,所以當(dāng)時(shí)函數(shù)有最大值為,即.當(dāng)且,即,或,時(shí)取等號(hào);因?yàn)?當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,令,則函數(shù)的對(duì)稱軸為,所以當(dāng)時(shí),函數(shù)有最小值為,即,當(dāng),且時(shí)取等號(hào),所以.故答案為:【點(diǎn)睛】本題考查基本不等式與二次函數(shù)求最值相結(jié)合求代數(shù)式的取值范圍;考查運(yùn)算求解能力和知識(shí)的綜合運(yùn)用能力;基本不等式:和的靈活運(yùn)用是求解本題的關(guān)鍵;屬于綜合型、難度大型試題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)答案不唯一,見(jiàn)解析【解析】
(1)由題意根據(jù)和差角的三角函數(shù)公式可得,再根據(jù)同角三角函數(shù)基本關(guān)系可得的值;(2)在中,由余弦定理可得,解方程分別由三角形面積公式可得答案.【詳解】解:(1)在中,因?yàn)?,又已知,所以,因?yàn)椋?,于?所以.(2)在中,由余弦定理得,得解得或,當(dāng)時(shí),的面積,當(dāng)時(shí),的面積.【點(diǎn)睛】本題考查正余弦定理理解三角形,涉及三角形的面積公式和分類討論思想,屬于中檔題.18、(1)(2)【解析】
利用平面向量數(shù)量積的坐標(biāo)表示和二倍角的余弦公式得到關(guān)于的方程,解方程即可求解;由知,在中利用余弦定理得到關(guān)于的方程,與方程聯(lián)立求出,進(jìn)而求出,利用兩角差的正弦公式求解即可.【詳解】由題意得,,由二倍角的余弦公式可得,,又因?yàn)?,所以,解得或,∵,?在中,由余弦定理得,即①又因?yàn)?把代入①整理得,,解得,,所以為等邊三角形,,∴,即.【點(diǎn)睛】本題考查利用平面向量數(shù)量積的坐標(biāo)表示和余弦定理及二倍角的余弦公式解三角形;熟練掌握余弦的二倍角公式和余弦定理是求解本題的關(guān)鍵;屬于中檔題、常考題型.19、(1)證明見(jiàn)詳解;(2).【解析】
(1)取中點(diǎn)為,通過(guò)證明//,進(jìn)而證明線面平行;(2)取中點(diǎn)為,以為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,求得兩個(gè)平面的法向量,用向量法解得二面角的大小.【詳解】(1)證明:取的中點(diǎn),連結(jié),,如下圖所示:在中,因?yàn)闉榈闹悬c(diǎn),,且,又為的中點(diǎn),,,且,,且,四邊形為平行四邊形,又平面,平面,平面,即證.(2)取中點(diǎn),連結(jié),,則,平面,以為原點(diǎn),分別以,,為,,軸,建立空間直角坐標(biāo)系,如下圖所示:則,,,,,,,,設(shè)平面的一個(gè)法向量,則,則,令.則,同理得平面的一個(gè)法向量為,則,故平面與平面所成二面角(銳角)的余弦值為.【點(diǎn)睛】本題考查由線線平行推證線面平行,以及利用向量法求解二面角的大小,屬綜合中檔題.20、(1)見(jiàn)解析(2)【解析】
(1)由余弦定理及已知等式得出關(guān)系,再由正弦定理可得結(jié)論;(2)由余弦定理和已知條件解得,然后由面積公
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧中醫(yī)藥大學(xué)《經(jīng)典電影作品研究》2023-2024學(xué)年第一學(xué)期期末試卷
- 蘭州現(xiàn)代職業(yè)學(xué)院《web應(yīng)用開(kāi)發(fā)基礎(chǔ)課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西理工大學(xué)《舞蹈專業(yè)教學(xué)法(1)》2023-2024學(xué)年第一學(xué)期期末試卷
- 濟(jì)南工程職業(yè)技術(shù)學(xué)院《紗線設(shè)計(jì)及打樣》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南工商大學(xué)《傳統(tǒng)武術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶交通大學(xué)《J2EE框架技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 鐘山職業(yè)技術(shù)學(xué)院《組件式GIS開(kāi)發(fā)技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江汽車職業(yè)技術(shù)學(xué)院《中國(guó)傳統(tǒng)音樂(lè)賞析》2023-2024學(xué)年第一學(xué)期期末試卷
- 中國(guó)戲曲學(xué)院《食品微生物學(xué)與微生物檢驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)學(xué)校2024-2025學(xué)年度第二學(xué)期工作計(jì)劃
- 智慧農(nóng)業(yè)的傳感器與智能設(shè)備
- 旅游路線規(guī)劃設(shè)計(jì)方案
- DB37-T 5097-2021 山東省綠色建筑評(píng)價(jià)標(biāo)準(zhǔn)
- 五年級(jí)上冊(cè)簡(jiǎn)易方程練習(xí)100題及答案
- MDR醫(yī)療器械法規(guī)考核試題及答案
- 讓學(xué)生看見(jiàn)你的愛(ài)
- 領(lǐng)導(dǎo)溝通的藝術(shù)
- 發(fā)生用藥錯(cuò)誤應(yīng)急預(yù)案
- 南潯至臨安公路(南潯至練市段)公路工程環(huán)境影響報(bào)告
- 綠色貸款培訓(xùn)課件
- 大學(xué)生預(yù)征對(duì)象登記表(樣表)
評(píng)論
0/150
提交評(píng)論