版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆重慶第二外國語學(xué)校高高三3月份模擬考試數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線:的一條漸近線方程為,則()A. B. C. D.2.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.3.已知函數(shù)是奇函數(shù),則的值為()A.-10 B.-9 C.-7 D.14.復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.6.己知函數(shù)的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.7.已知,,,若,則()A. B. C. D.8.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.9.為計算,設(shè)計了如圖所示的程序框圖,則空白框中應(yīng)填入()A. B. C. D.10.函數(shù)的大致圖象為()A. B.C. D.11.已知集合,則集合()A. B. C. D.12.近年來,隨著網(wǎng)絡(luò)的普及和智能手機的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學(xué)為了調(diào)查在校大學(xué)生使用的主要用途,隨機抽取了名大學(xué)生進行調(diào)查,各主要用途與對應(yīng)人數(shù)的結(jié)果統(tǒng)計如圖所示,現(xiàn)有如下說法:①可以估計使用主要聽音樂的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);②可以估計不足的大學(xué)生使用主要玩游戲;③可以估計使用主要找人聊天的大學(xué)生超過總數(shù)的.其中正確的個數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,,則___________.14.連續(xù)2次拋擲一顆質(zhì)地均勻的骰子(六個面上分別標(biāo)有數(shù)字1,2,3,4,5,6的正方體),觀察向上的點數(shù),則事件“點數(shù)之積是3的倍數(shù)”的概率為____.15.已知函數(shù).若在區(qū)間上恒成立.則實數(shù)的取值范圍是__________.16.設(shè)函數(shù),當(dāng)時,記最大值為,則的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)[2018·石家莊一檢]已知函數(shù).(1)若,求函數(shù)的圖像在點處的切線方程;(2)若函數(shù)有兩個極值點,,且,求證:.18.(12分)已知函數(shù),將的圖象向左移個單位,得到函數(shù)的圖象.(1)若,求的單調(diào)區(qū)間;(2)若,的一條對稱軸是,求在的值域.19.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點在上,點在上,求的最小值以及此時的直角坐標(biāo).20.(12分)已知函數(shù).(1)當(dāng)時,求函數(shù)的圖象在處的切線方程;(2)討論函數(shù)的單調(diào)性;(3)當(dāng)時,若方程有兩個不相等的實數(shù)根,求證:.21.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時,如果方程有兩個不等實根,求實數(shù)t的取值范圍,并證明.22.(10分)已知三棱錐中,為等腰直角三角形,,設(shè)點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點睛】本小題主要考查雙曲線的漸近線,屬于基礎(chǔ)題.2、D【解析】
根據(jù)面面關(guān)系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯誤;命題“:,”的否定為:,,故B錯誤;為真,說明至少一個為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.3、B【解析】
根據(jù)分段函數(shù)表達式,先求得的值,然后結(jié)合的奇偶性,求得的值.【詳解】因為函數(shù)是奇函數(shù),所以,.故選:B【點睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)求函數(shù)值,考查數(shù)形結(jié)合思想.意在考查學(xué)生的運算能力,分析問題、解決問題的能力.4、B【解析】
利用復(fù)數(shù)的四則運算以及幾何意義即可求解.【詳解】解:,則復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為:,位于第二象限.故選:B.【點睛】本題考查了復(fù)數(shù)的四則運算以及復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題.5、A【解析】
首先的單調(diào)性,由此判斷出,由求得的關(guān)系式.利用導(dǎo)數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構(gòu)造函數(shù),.構(gòu)造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.6、A【解析】
先將函數(shù)解析式化簡為,結(jié)合題意可求得切點及其范圍,根據(jù)導(dǎo)數(shù)幾何意義,即可求得的值.【詳解】函數(shù)即直線與函數(shù)圖象恰有四個公共點,結(jié)合圖象知直線與函數(shù)相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數(shù)的圖像與性質(zhì)的綜合應(yīng)用,由交點及導(dǎo)數(shù)的幾何意義求函數(shù)值,屬于難題.7、B【解析】
由平行求出參數(shù),再由數(shù)量積的坐標(biāo)運算計算.【詳解】由,得,則,,,所以.故選:B.【點睛】本題考查向量平行的坐標(biāo)表示,考查數(shù)量積的坐標(biāo)運算,掌握向量數(shù)量積的坐標(biāo)運算是解題關(guān)鍵.8、B【解析】
由題意建立空間直角坐標(biāo)系,表示出各點坐標(biāo)后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標(biāo)系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【點睛】本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.9、A【解析】
根據(jù)程序框圖輸出的S的值即可得到空白框中應(yīng)填入的內(nèi)容.【詳解】由程序框圖的運行,可得:S=0,i=0滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=1,S=1,i=1滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=2×(﹣2),S=1+2×(﹣2),i=2滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…觀察規(guī)律可知:滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此時,應(yīng)該不滿足判斷框內(nèi)的條件,退出循環(huán),輸出S的值,所以判斷框中的條件應(yīng)是i<1.故選:A.【點睛】本題考查了當(dāng)型循環(huán)結(jié)構(gòu),當(dāng)型循環(huán)是先判斷后執(zhí)行,滿足條件執(zhí)行循環(huán),不滿足條件時算法結(jié)束,屬于基礎(chǔ)題.10、A【解析】
利用特殊點的坐標(biāo)代入,排除掉C,D;再由判斷A選項正確.【詳解】,排除掉C,D;,,,.故選:A.【點睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.11、D【解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎(chǔ)題.12、C【解析】
根據(jù)利用主要聽音樂的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計算使用主要玩游戲的大學(xué)生所占的比例,可判斷②的正誤;計算使用主要找人聊天的大學(xué)生所占的比例,可判斷③的正誤.綜合得出結(jié)論.【詳解】使用主要聽音樂的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調(diào)查的總?cè)藬?shù)為,,故超過的大學(xué)生使用主要玩游戲,所以②錯誤;使用主要找人聊天的大學(xué)生人數(shù)為,因為,所以③正確.故選:C.【點睛】本題考查統(tǒng)計中相關(guān)命題真假的判斷,計算出相應(yīng)的頻數(shù)與頻率是關(guān)鍵,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
因為,所以,又,所以,則,所以.14、【解析】總事件數(shù)為,目標(biāo)事件:當(dāng)?shù)谝活w骰子為1,2,4,6,具體事件有,共8種;當(dāng)?shù)谝活w骰子為3,6,則第二顆骰子隨便都可以,則有種;所以目標(biāo)事件共20中,所以。15、【解析】
首先解不等式,再由在區(qū)間上恒成立,即得到不等組,解得即可.【詳解】解:且,即解得,即因為在區(qū)間上恒成立,解得即故答案為:【點睛】本題考查一元二次不等式及函數(shù)的綜合問題,屬于基礎(chǔ)題.16、【解析】
易知,設(shè),,利用絕對值不等式的性質(zhì)即可得解.【詳解】,設(shè),,令,當(dāng)時,,所以單調(diào)遞減令,當(dāng)時,,所以單調(diào)遞增所以當(dāng)時,,,則則,即故答案為:.【點睛】本題考查函數(shù)最值的求法,考查絕對值不等式的性質(zhì),考查轉(zhuǎn)化思想及邏輯推理能力,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】試題分析:(1)分別求得和,由點斜式可得切線方程;(2)由已知條件可得有兩個相異實根,,進而再求導(dǎo)可得,結(jié)合函數(shù)的單調(diào)性可得,從而得證.試題解析:(1)由已知條件,,當(dāng)時,,,當(dāng)時,,所以所求切線方程為(2)由已知條件可得有兩個相異實根,,令,則,1)若,則,單調(diào)遞增,不可能有兩根;2)若,令得,可知在上單調(diào)遞增,在上單調(diào)遞減,令解得,由有,由有,從而時函數(shù)有兩個極值點,當(dāng)變化時,,的變化情況如下表單調(diào)遞減單調(diào)遞增單調(diào)遞減因為,所以,在區(qū)間上單調(diào)遞增,.另解:由已知可得,則,令,則,可知函數(shù)在單調(diào)遞增,在單調(diào)遞減,若有兩個根,則可得,當(dāng)時,,所以在區(qū)間上單調(diào)遞增,所以.18、(1)增區(qū)間為,減區(qū)間為;(2).【解析】
(1)由題意利用三角函數(shù)圖象變換規(guī)律求得的解析式,然后利用余弦函數(shù)的單調(diào)性,得出結(jié)論;(2)由題意利用余弦函數(shù)的圖象的對稱性求得,再根據(jù)余弦函數(shù)的定義域和值域,得出結(jié)論.【詳解】由題意得(1)向左平移個單位得到,增區(qū)間:解不等式,解得,減區(qū)間:解不等式,解得.綜上可得,的單調(diào)增區(qū)間為,減區(qū)間為;(2)由題易知,,因為的一條對稱軸是,所以,,解得,.又因為,所以,即.因為,所以,則,所以在的值域是.【點睛】本題主要考查三角函數(shù)圖象變換規(guī)律,余弦函數(shù)圖象的對稱性,余弦函數(shù)的單調(diào)性和值域,屬于中檔題.19、(1):,:;(2),此時.【解析】試題分析:(1)的普通方程為,的直角坐標(biāo)方程為;(2)由題意,可設(shè)點的直角坐標(biāo)為到的距離當(dāng)且僅當(dāng)時,取得最小值,最小值為,此時的直角坐標(biāo)為.試題解析:(1)的普通方程為,的直角坐標(biāo)方程為.(2)由題意,可設(shè)點的直角坐標(biāo)為,因為是直線,所以的最小值即為到的距離的最小值,.當(dāng)且僅當(dāng)時,取得最小值,最小值為,此時的直角坐標(biāo)為.考點:坐標(biāo)系與參數(shù)方程.【方法點睛】參數(shù)方程與普通方程的互化:把參數(shù)方程化為普通方程,需要根據(jù)其結(jié)構(gòu)特征,選取適當(dāng)?shù)南麉⒎椒?,常見的消參方法有:代入消參法;加減消參法;平方和(差)消參法;乘法消參法;混合消參法等.把曲線的普通方程化為參數(shù)方程的關(guān)鍵:一是適當(dāng)選取參數(shù);二是確?;セ昂蠓匠痰牡葍r性.注意方程中的參數(shù)的變化范圍.20、(1);(2)當(dāng)時,在上是減函數(shù);當(dāng)時,在上是增函數(shù);(3)證明見解析.【解析】
(1)當(dāng)時,,求得其導(dǎo)函數(shù),,可求得函數(shù)的圖象在處的切線方程;(2)由已知得,得出導(dǎo)函數(shù),并得出導(dǎo)函數(shù)取得正負的區(qū)間,可得出函數(shù)的單調(diào)性;(3)當(dāng)時,,,由(2)得的單調(diào)區(qū)間,以當(dāng)方程有兩個不相等的實數(shù)根,不妨設(shè),且有,,構(gòu)造函數(shù),分析其導(dǎo)函數(shù)的正負得出函數(shù)的單調(diào)性,得出其最值,所證的不等式可得證.【詳解】(1)當(dāng)時,,所以,,所以函數(shù)的圖象在處的切線方程為,即;(2)由已知得,,令,得,所以當(dāng)時,,當(dāng)時,,所以在上是減函數(shù),在上是增函數(shù);(3)當(dāng)時,,,由(2)得在上單調(diào)遞減,在單調(diào)遞增,所以,且時,,當(dāng)時,,,所以當(dāng)方程有兩個不相等的實數(shù)根,不妨設(shè),且有,,構(gòu)造函數(shù),則,當(dāng)時,所以,在上單調(diào)遞減,且,,由,在上單調(diào)遞增,.所以.【點睛】本題考查運用導(dǎo)函數(shù)求函數(shù)在某點的切線方程,討論函數(shù)的單調(diào)性,以及證明不等式,關(guān)鍵在于構(gòu)造適當(dāng)?shù)暮瘮?shù),得出其導(dǎo)函數(shù)的正負,得出所構(gòu)造的函數(shù)的單調(diào)性,屬于難度題.21、(1)當(dāng)時,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;當(dāng)時,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;(2),證明見解析.【解析】
(1)求出,對分類討論,分別求出的解,即可得出結(jié)論;(2)由(1)得出有兩解時的范圍,以及關(guān)系,將,等價轉(zhuǎn)化為證明,不妨設(shè),令,則,即證,構(gòu)造函數(shù),只要證明對于任意恒成
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 液壓與氣壓課程設(shè)計銑床
- 自動化專業(yè)的課程設(shè)計
- 統(tǒng)計模型與軟件課程設(shè)計
- 編織棉鞋初步課程設(shè)計
- 《序構(gòu)化纖維素納米纖維材料的構(gòu)建及其性能研究》
- 《文昌海域內(nèi)波特征研究》
- 《基于幾何形態(tài)測量學(xué)的帕金森病患者胼胝體形態(tài)研究》
- 2025年度城市綠化PPP項目合同范本6篇
- 2025年度拌合站場地租賃與節(jié)能減排技術(shù)改造合同3篇
- 《基于語文核心素養(yǎng)的初中古詩詞教學(xué)策略研究》
- 工程制圖復(fù)習(xí)題(帶答案)
- 風(fēng)管采購安裝合同范例
- GB/T 21099.2-2024企業(yè)系統(tǒng)中的設(shè)備和集成過程控制用功能塊(FB)和電子設(shè)備描述語言(EDDL)第2部分:FB概念規(guī)范
- 期末模擬練習(xí)(試題)(含答案)-2024-2025學(xué)年三年級上冊數(shù)學(xué)西師大版
- 2024年黑龍江農(nóng)業(yè)工程職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫
- 企業(yè)法律顧問詳細流程
- 云數(shù)據(jù)中心建設(shè)項目可行性研究報告
- 《新生兒視網(wǎng)膜動靜脈管徑比的形態(tài)學(xué)分析及相關(guān)性研究》
- MOOC 國際商務(wù)-暨南大學(xué) 中國大學(xué)慕課答案
- 二年級上冊英語教案Unit6 Lesson22︱北京課改版
- 桂枝加龍骨牡蠣湯_金匱要略卷上_方劑加減變化匯總
評論
0/150
提交評論