北京青年政治學(xué)院《數(shù)值分析》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
北京青年政治學(xué)院《數(shù)值分析》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
北京青年政治學(xué)院《數(shù)值分析》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
北京青年政治學(xué)院《數(shù)值分析》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
北京青年政治學(xué)院《數(shù)值分析》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)北京青年政治學(xué)院《數(shù)值分析》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、數(shù)據(jù)分析中,假設(shè)檢驗(yàn)是常用的方法之一。以下關(guān)于假設(shè)檢驗(yàn)的描述,錯(cuò)誤的是:()A.原假設(shè)和備擇假設(shè)是相互對(duì)立的B.當(dāng)P值小于顯著性水平時(shí),拒絕原假設(shè)C.第一類錯(cuò)誤是指錯(cuò)誤地拒絕了原假設(shè)D.樣本量越大,越容易犯第二類錯(cuò)誤2、數(shù)據(jù)分析在市場(chǎng)營(yíng)銷中有著廣泛的應(yīng)用。假設(shè)一家公司想要評(píng)估不同廣告渠道的效果。以下關(guān)于數(shù)據(jù)分析在市場(chǎng)營(yíng)銷中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過(guò)A/B測(cè)試比較不同廣告版本的效果,確定最優(yōu)方案B.客戶細(xì)分能夠幫助企業(yè)針對(duì)不同客戶群體制定個(gè)性化的營(yíng)銷策略C.僅僅依靠數(shù)據(jù)分析就能夠完全了解客戶的需求和行為,無(wú)需進(jìn)行市場(chǎng)調(diào)研D.數(shù)據(jù)分析可以監(jiān)測(cè)營(yíng)銷活動(dòng)的效果,及時(shí)調(diào)整策略,提高投資回報(bào)率3、在數(shù)據(jù)分析中,模型的選擇和調(diào)優(yōu)需要根據(jù)數(shù)據(jù)和問(wèn)題的特點(diǎn)進(jìn)行。假設(shè)我們要解決一個(gè)分類問(wèn)題。以下關(guān)于模型選擇和調(diào)優(yōu)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.不同的模型在不同的數(shù)據(jù)集上表現(xiàn)可能不同,需要進(jìn)行試驗(yàn)和比較B.可以通過(guò)調(diào)整模型的超參數(shù)來(lái)優(yōu)化模型的性能C.模型越復(fù)雜,性能就一定越好,應(yīng)該優(yōu)先選擇復(fù)雜的模型D.可以使用網(wǎng)格搜索、隨機(jī)搜索等方法進(jìn)行超參數(shù)調(diào)優(yōu)4、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的配色方案選擇也很重要。假設(shè)要?jiǎng)?chuàng)建一個(gè)展示銷售數(shù)據(jù)的圖表,以下關(guān)于配色方案選擇的描述,正確的是:()A.隨意選擇喜歡的顏色,不考慮顏色的對(duì)比度和可讀性B.使用過(guò)于鮮艷和刺眼的顏色組合,以吸引注意力C.遵循色彩理論和設(shè)計(jì)原則,選擇對(duì)比度高、易于區(qū)分和視覺(jué)舒適的配色方案,使數(shù)據(jù)清晰可讀,并根據(jù)數(shù)據(jù)的性質(zhì)和重要性進(jìn)行顏色映射D.不考慮色盲和色弱人群的觀看體驗(yàn),只追求美觀5、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行降維并保留數(shù)據(jù)的主要特征,以下哪種方法基于矩陣分解?()A.主成分分析B.因子分析C.獨(dú)立成分分析D.以上都是6、在對(duì)一家公司的人力資源數(shù)據(jù)進(jìn)行分析,例如員工的績(jī)效評(píng)估、工作年限、培訓(xùn)經(jīng)歷等,以找出影響員工績(jī)效的因素,并為人力資源決策提供支持。以下哪種分析方法可能有助于發(fā)現(xiàn)潛在的模式和關(guān)系?()A.主成分分析B.關(guān)聯(lián)規(guī)則挖掘C.文本挖掘D.以上都是7、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的性能優(yōu)化是提高數(shù)據(jù)分析效率的關(guān)鍵。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)性能優(yōu)化的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)性能優(yōu)化可以從硬件、軟件和數(shù)據(jù)三個(gè)方面入手B.硬件方面可以通過(guò)升級(jí)服務(wù)器、增加內(nèi)存和存儲(chǔ)等方式提高性能C.軟件方面可以通過(guò)優(yōu)化數(shù)據(jù)庫(kù)設(shè)計(jì)、調(diào)整查詢語(yǔ)句和使用索引等方式提高性能D.數(shù)據(jù)方面可以通過(guò)增加數(shù)據(jù)量和提高數(shù)據(jù)質(zhì)量來(lái)提高性能8、在進(jìn)行數(shù)據(jù)預(yù)處理時(shí),特征工程是重要的環(huán)節(jié)。假設(shè)我們有一個(gè)包含房屋屬性(面積、房間數(shù)量、地理位置等)和價(jià)格的數(shù)據(jù)集,以下關(guān)于特征工程的描述,正確的是:()A.直接使用原始特征進(jìn)行建模,無(wú)需進(jìn)行任何特征轉(zhuǎn)換和構(gòu)建B.對(duì)地理位置進(jìn)行獨(dú)熱編碼可以有效地將其納入模型C.特征縮放對(duì)模型的性能沒(méi)有影響,可忽略D.增加一些與房屋價(jià)格無(wú)關(guān)的特征,能夠提高模型的準(zhǔn)確性9、數(shù)據(jù)分析中的特征工程用于創(chuàng)建和選擇對(duì)模型有用的特征。假設(shè)我們要對(duì)一組圖像數(shù)據(jù)進(jìn)行分析。以下關(guān)于特征工程的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)提取圖像的顏色、形狀、紋理等特征來(lái)表示圖像B.特征選擇可以去除冗余和無(wú)關(guān)的特征,提高模型的效率和性能C.特征工程只適用于結(jié)構(gòu)化數(shù)據(jù),對(duì)圖像、音頻等非結(jié)構(gòu)化數(shù)據(jù)不適用D.可以使用特征縮放、編碼等方法對(duì)特征進(jìn)行預(yù)處理10、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示多個(gè)變量之間的相關(guān)性,以下哪種圖表較為合適?()A.熱力圖B.平行坐標(biāo)圖C.?;鶊DD.以上都是11、數(shù)據(jù)分析中的探索性數(shù)據(jù)分析(EDA)有助于理解數(shù)據(jù)的特征和分布。假設(shè)我們正在分析一個(gè)關(guān)于股票市場(chǎng)的數(shù)據(jù)集,包括股票價(jià)格、成交量等變量。在進(jìn)行EDA時(shí),以下哪種可視化方法可能最有助于發(fā)現(xiàn)價(jià)格和成交量之間的潛在關(guān)系?()A.柱狀圖B.折線圖C.散點(diǎn)圖D.箱線圖12、假設(shè)要分析股票市場(chǎng)數(shù)據(jù)的波動(dòng)性,以下關(guān)于波動(dòng)性分析方法的描述,正確的是:()A.計(jì)算簡(jiǎn)單移動(dòng)平均就能準(zhǔn)確衡量股票價(jià)格的波動(dòng)性B.標(biāo)準(zhǔn)差越大,說(shuō)明股票價(jià)格的波動(dòng)性越小C.歷史波動(dòng)率對(duì)預(yù)測(cè)未來(lái)股票價(jià)格的波動(dòng)沒(méi)有參考價(jià)值D.采用ARCH和GARCH模型可以更好地捕捉股票價(jià)格波動(dòng)的聚類性和異方差性13、當(dāng)分析一個(gè)移動(dòng)應(yīng)用的用戶使用數(shù)據(jù),比如使用頻率、功能使用情況、用戶留存率等,以改進(jìn)應(yīng)用的功能和用戶體驗(yàn)。為了增加用戶留存率,以下哪種策略可能是有效的?()A.推出新的功能B.優(yōu)化應(yīng)用的界面設(shè)計(jì)C.加強(qiáng)用戶互動(dòng)和社交元素D.以上都是14、當(dāng)處理高維度的數(shù)據(jù)時(shí),以下哪種方法可以用于降低數(shù)據(jù)的維度,同時(shí)保留重要的信息?()A.主成分分析B.因子分析C.線性判別分析D.以上都是15、數(shù)據(jù)分析中,數(shù)據(jù)安全策略的制定應(yīng)考慮多方面因素。以下關(guān)于數(shù)據(jù)安全策略制定的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)安全策略的制定應(yīng)包括數(shù)據(jù)的加密、備份、訪問(wèn)控制和審計(jì)等方面B.數(shù)據(jù)安全策略的制定應(yīng)根據(jù)數(shù)據(jù)的重要性和敏感性來(lái)確定不同的安全級(jí)別C.數(shù)據(jù)安全策略的制定應(yīng)定期進(jìn)行評(píng)估和調(diào)整,以適應(yīng)不斷變化的安全環(huán)境D.數(shù)據(jù)安全策略的制定只需要考慮企業(yè)內(nèi)部的安全需求,不需要考慮外部的安全威脅16、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),需要找出不同變量之間的關(guān)系。假設(shè)要分析消費(fèi)者的購(gòu)買行為與廣告投放之間的關(guān)聯(lián),數(shù)據(jù)量龐大且變量眾多。以下哪種關(guān)聯(lián)分析方法在處理這種復(fù)雜的商業(yè)數(shù)據(jù)時(shí)更能發(fā)現(xiàn)有價(jià)值的關(guān)聯(lián)規(guī)則?()A.Apriori算法B.FP-Growth算法C.Eclat算法D.以上算法效果相同17、數(shù)據(jù)分析中的數(shù)據(jù)質(zhì)量評(píng)估需要從多個(gè)方面衡量數(shù)據(jù)的優(yōu)劣。假設(shè)要評(píng)估一個(gè)收集的市場(chǎng)調(diào)研數(shù)據(jù)的質(zhì)量,包括準(zhǔn)確性、完整性、一致性和時(shí)效性等方面。以下哪種數(shù)據(jù)質(zhì)量評(píng)估指標(biāo)在綜合評(píng)估數(shù)據(jù)質(zhì)量時(shí)更具全面性和客觀性?()A.數(shù)據(jù)質(zhì)量得分B.數(shù)據(jù)質(zhì)量矩陣C.數(shù)據(jù)質(zhì)量報(bào)告D.以上方法效果相同18、在數(shù)據(jù)分析中,抽樣是獲取代表性數(shù)據(jù)的常用方法。假設(shè)要從一個(gè)大型數(shù)據(jù)庫(kù)中抽取樣本以估計(jì)總體特征,以下關(guān)于抽樣方法選擇的描述,正確的是:()A.采用簡(jiǎn)單隨機(jī)抽樣,不考慮總體的結(jié)構(gòu)和特征B.隨意選擇抽樣方法,不考慮樣本的代表性和誤差C.根據(jù)總體的特點(diǎn)和研究目的,選擇合適的抽樣方法,如分層抽樣、系統(tǒng)抽樣等,并控制抽樣誤差D.為了方便,抽取少量樣本,不考慮樣本量對(duì)結(jié)果的影響19、假設(shè)要分析社交媒體上的輿論趨勢(shì),以下關(guān)于輿論分析方法的描述,正確的是:()A.只統(tǒng)計(jì)帖子的數(shù)量就能了解輿論的走向B.對(duì)帖子的內(nèi)容進(jìn)行情感分析和主題提取,綜合判斷輿論趨勢(shì)C.忽略社交媒體平臺(tái)的特點(diǎn)和用戶行為,直接進(jìn)行分析D.輿論分析不需要考慮時(shí)間因素,只關(guān)注當(dāng)前的熱門話題20、在數(shù)據(jù)分析的抽樣方法中,假設(shè)要從一個(gè)大規(guī)模的數(shù)據(jù)集中抽取一部分樣本進(jìn)行分析。為了保證樣本具有代表性,以下哪種抽樣方法可能是較好的選擇?()A.簡(jiǎn)單隨機(jī)抽樣,每個(gè)個(gè)體被抽取的概率相等B.分層抽樣,按不同層次分別抽樣C.系統(tǒng)抽樣,按照一定的間隔抽取D.不進(jìn)行抽樣,直接分析整個(gè)數(shù)據(jù)集21、在數(shù)據(jù)分析中,特征工程用于從原始數(shù)據(jù)中提取有意義的特征。假設(shè)要對(duì)文本數(shù)據(jù)進(jìn)行特征工程,以下關(guān)于特征工程的描述,哪一項(xiàng)是不正確的?()A.可以使用詞頻-逆文檔頻率(TF-IDF)來(lái)衡量單詞在文本中的重要性B.詞嵌入技術(shù),如Word2Vec,可以將單詞表示為低維向量C.特征工程只需要考慮數(shù)據(jù)的數(shù)值特征,對(duì)于文本等非數(shù)值特征不需要處理D.特征選擇可以去除冗余和無(wú)關(guān)的特征,提高模型的效率和性能22、在數(shù)據(jù)分析中,選擇合適的數(shù)據(jù)分析方法至關(guān)重要。關(guān)于描述性統(tǒng)計(jì)分析和推斷性統(tǒng)計(jì)分析,以下敘述不正確的是()A.描述性統(tǒng)計(jì)分析主要用于對(duì)數(shù)據(jù)的集中趨勢(shì)、離散程度和分布形態(tài)進(jìn)行描述和總結(jié)B.推斷性統(tǒng)計(jì)分析則是基于樣本數(shù)據(jù)對(duì)總體特征進(jìn)行估計(jì)和假設(shè)檢驗(yàn)C.描述性統(tǒng)計(jì)分析只能提供數(shù)據(jù)的基本信息,對(duì)于深入了解數(shù)據(jù)的內(nèi)在規(guī)律和關(guān)系作用有限D(zhuǎn).在實(shí)際應(yīng)用中,通常先進(jìn)行描述性統(tǒng)計(jì)分析,然后根據(jù)研究目的和數(shù)據(jù)特點(diǎn)選擇是否進(jìn)行推斷性統(tǒng)計(jì)分析23、在進(jìn)行數(shù)據(jù)分析時(shí),有時(shí)候需要對(duì)多個(gè)數(shù)據(jù)集進(jìn)行合并和連接。假設(shè)我們有兩個(gè)數(shù)據(jù)集,分別包含客戶的基本信息和購(gòu)買記錄,以下哪種連接方式可以根據(jù)共同的客戶ID將兩個(gè)數(shù)據(jù)集合并?()A.內(nèi)連接B.外連接C.左連接D.以上都是24、在構(gòu)建數(shù)據(jù)分析模型時(shí),過(guò)擬合是一個(gè)常見(jiàn)的問(wèn)題。假設(shè)一個(gè)模型在訓(xùn)練集上表現(xiàn)非常好,但在測(cè)試集上表現(xiàn)很差,這可能表明發(fā)生了什么?()A.模型過(guò)于簡(jiǎn)單,無(wú)法捕捉數(shù)據(jù)中的復(fù)雜模式B.模型過(guò)于復(fù)雜,對(duì)訓(xùn)練數(shù)據(jù)過(guò)度擬合C.數(shù)據(jù)中存在噪聲,影響了模型的性能D.測(cè)試集的數(shù)據(jù)質(zhì)量有問(wèn)題25、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理是必不可少的步驟。以下關(guān)于數(shù)據(jù)預(yù)處理的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)轉(zhuǎn)換、數(shù)據(jù)集成等多個(gè)環(huán)節(jié)B.數(shù)據(jù)預(yù)處理的目的是提高數(shù)據(jù)的質(zhì)量,為后續(xù)分析提供更好的數(shù)據(jù)基礎(chǔ)C.數(shù)據(jù)預(yù)處理可以使用自動(dòng)化工具和算法,也可以手動(dòng)進(jìn)行處理D.數(shù)據(jù)預(yù)處理只需要在數(shù)據(jù)分析的開(kāi)始階段進(jìn)行,一旦完成就不需要再進(jìn)行調(diào)整26、數(shù)據(jù)分析中的文本分析用于處理非結(jié)構(gòu)化的文本數(shù)據(jù)。假設(shè)要從大量的客戶評(píng)論中提取關(guān)鍵信息和情感傾向,以下關(guān)于文本分析方法的描述,正確的是:()A.僅使用簡(jiǎn)單的關(guān)鍵詞計(jì)數(shù),不考慮文本的語(yǔ)義和語(yǔ)境B.不進(jìn)行文本的預(yù)處理和清洗,直接應(yīng)用分析算法C.采用自然語(yǔ)言處理技術(shù),包括詞法分析、句法分析、情感分析等,對(duì)文本進(jìn)行預(yù)處理、特征提取和建模,以準(zhǔn)確理解和挖掘文本中的信息D.認(rèn)為文本分析結(jié)果一定準(zhǔn)確可靠,不需要人工驗(yàn)證和修正27、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀地理解數(shù)據(jù)。假設(shè)要展示不同地區(qū)在過(guò)去十年間的經(jīng)濟(jì)增長(zhǎng)趨勢(shì),以下關(guān)于數(shù)據(jù)可視化的描述,哪一項(xiàng)是不正確的?()A.可以使用折線圖清晰地呈現(xiàn)經(jīng)濟(jì)指標(biāo)隨時(shí)間的變化B.柱狀圖能夠有效地對(duì)比不同地區(qū)在特定時(shí)間點(diǎn)的經(jīng)濟(jì)數(shù)值C.為了使圖表更美觀,可以添加過(guò)多的裝飾元素,即使這可能會(huì)干擾數(shù)據(jù)的解讀D.選擇合適的顏色和標(biāo)記,能夠增強(qiáng)圖表的可讀性和吸引力28、假設(shè)要分析一個(gè)零售企業(yè)的庫(kù)存數(shù)據(jù),包括商品種類、庫(kù)存數(shù)量、銷售速度等,以制定合理的補(bǔ)貨策略。以下哪個(gè)因素可能對(duì)庫(kù)存管理的效率產(chǎn)生最大影響?()A.商品的銷售預(yù)測(cè)準(zhǔn)確性B.供應(yīng)商的交貨時(shí)間C.庫(kù)存成本D.以上都是29、數(shù)據(jù)分析中,數(shù)據(jù)分析方法的選擇應(yīng)根據(jù)具體問(wèn)題來(lái)確定。以下關(guān)于數(shù)據(jù)分析方法選擇的說(shuō)法中,錯(cuò)誤的是?()A.不同的數(shù)據(jù)分析方法適用于不同類型的問(wèn)題和數(shù)據(jù),需要根據(jù)實(shí)際情況進(jìn)行選擇B.數(shù)據(jù)分析方法的選擇可以參考前人的研究經(jīng)驗(yàn)和案例,但不能完全依賴C.選擇數(shù)據(jù)分析方法時(shí),應(yīng)考慮方法的準(zhǔn)確性、效率和可解釋性等因素D.數(shù)據(jù)分析方法一旦確定就不能再進(jìn)行調(diào)整和改變,否則會(huì)影響分析結(jié)果的可靠性30、在數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量的評(píng)估指標(biāo)有很多,其中準(zhǔn)確性是一個(gè)重要的指標(biāo)。以下關(guān)于準(zhǔn)確性的描述中,錯(cuò)誤的是?()A.準(zhǔn)確性是指數(shù)據(jù)與實(shí)際情況的符合程度B.準(zhǔn)確性可以通過(guò)計(jì)算數(shù)據(jù)的誤差率來(lái)衡量C.提高數(shù)據(jù)的準(zhǔn)確性可以通過(guò)數(shù)據(jù)清洗和驗(yàn)證等方法來(lái)實(shí)現(xiàn)D.數(shù)據(jù)的準(zhǔn)確性只與數(shù)據(jù)的來(lái)源有關(guān),與數(shù)據(jù)分析的方法和工具無(wú)關(guān)二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)探討在電商平臺(tái)的商品評(píng)價(jià)數(shù)據(jù)中,如何運(yùn)用文本挖掘技術(shù)提取關(guān)鍵信息,改進(jìn)商品質(zhì)量和服務(wù)。2、(本題5分)在農(nóng)業(yè)生產(chǎn)中,如何利用數(shù)據(jù)分析預(yù)測(cè)氣象災(zāi)害對(duì)農(nóng)作物的影響,提前采取防范措施,降低農(nóng)業(yè)損失。3、(本題5分)能源行業(yè)在能源生產(chǎn)、傳輸和分配過(guò)程中產(chǎn)生了大量的數(shù)據(jù)。探討如何借助數(shù)據(jù)分析方法,比如能源需求預(yù)測(cè)、電網(wǎng)故障診斷等,實(shí)現(xiàn)能源的合理調(diào)配、保障能源供應(yīng)的穩(wěn)定性和可靠性,同時(shí)研究在數(shù)據(jù)采集精度、數(shù)據(jù)更新頻率和跨部門數(shù)據(jù)整合方面所面臨的困難及解決途徑。4、(本題5分)隨著社交媒體的蓬勃發(fā)展,用戶生成了大量的文本數(shù)據(jù)。以某知名社交平臺(tái)為例,探討如何運(yùn)用自然語(yǔ)言處理技術(shù)和數(shù)據(jù)分析方法對(duì)這些文本進(jìn)行情感分析,挖掘用戶的情緒傾向和觀點(diǎn),以及如何將這些分析結(jié)果應(yīng)用于產(chǎn)品改進(jìn)、營(yíng)銷策略制定和輿情監(jiān)測(cè)。5、(本題5分)在旅游景區(qū)的管理中,游客流量和行為數(shù)據(jù)對(duì)于服務(wù)優(yōu)化至關(guān)重要。以某著名旅游景區(qū)為例,闡述如何通過(guò)數(shù)據(jù)分析來(lái)合理規(guī)劃景區(qū)設(shè)施、優(yōu)化游覽路線、預(yù)測(cè)游客高峰,以及如何提升景區(qū)的可持續(xù)發(fā)展能力。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)異常檢測(cè)在數(shù)據(jù)分析中具有重要意義,請(qǐng)闡述常見(jiàn)的異常檢測(cè)算法,如基于統(tǒng)計(jì)的方法、基于距離的方法等的原理和應(yīng)用場(chǎng)景。2、(本題5分)描述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的敏感性分析,包括確定敏感因素、評(píng)估影響程度和采取應(yīng)對(duì)措施。3、(本題5分)數(shù)據(jù)倉(cāng)庫(kù)在企業(yè)數(shù)據(jù)分析中具有重要地位,請(qǐng)說(shuō)明數(shù)據(jù)倉(cāng)庫(kù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論