版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Received<day>March2023
Revised<day><month><year>
Accepted<day><month><year>
DOI:xxx/xxxx
ARTICLETYPE
GNSSSoftwareDefinedRadio:History,CurrentDevelopments,
andStandardizationEfforts
ThomasPany1|DennisAkos2|JavierArribas3|M.ZahidulH.Bhuiyan4|PauClosas5|Fabio
Dovis6|IgnacioFernandez-Hernandez7|CarlesFernández–Prades3|SanjeevGunawardena8|ToddHumphreys9|ZaherM.Kassas10|JoséA.LópezSalcedo11|MarioNicola12|MarkL.
Psiaki13|AlexanderRügamer14|Young-JinSong15|Jong-HoonWon15
1UniversityoftheBundeswehrMunich,Neubiberg,Germany
2UniversityofColorado,Boulder,USA
3CentreTecnològicdeTelecomunicacionsdeCatalunya,Barcelona,Spain
4FinnishGeospatialResearchInstitute,Kirkkonummi,Finland
5NortheasternUniversity,Boston,USA
6PolitecnicodiTorino,Turin,Italy
7EuropeanCommission,Brussels,Belgium
8AirForceInstituteofTechnology,Wright-PattersonAFB,USA
9TheUniversityofTexasatAustin,Austin,USA
10TheOhioStateUniversity,Columbus,USA
11UniversitatAutònomadeBarcelona,CerdanyoladelVallès,Spain
12LINKSFoundation,Turin,Italy
13VirginiaTech,Blacksburg,USA
14FraunhoferInstituteforIntegratedCircuitsIIS,Erlangen,Germany
15InhaUniversity,Incheon,SouthKorea
Summary
Takingtheworkconductedbytheglobalnavigationsatellitesystem(GNSS)software-definedradio(SDR)workinggroupduringthelastdecadeasaseed,thiscontributionsummarizesforthefirsttimethehistoryofGNSSSDRdevelopment.IthighlightsselectedSDRimplementationsandachievementsthatareavailabletothepublicorthatinfluencedthegeneralSDRdevelopment.Therelationtothestandard-izationprocessofintermediatefrequency(IF)sampledataandmetadataisdiscussed,andanupdateoftheInstituteofNavigation(ION)SDRStandardisproposed.TheworkfocusesonGNSSSDRimplementationsongeneralpurposeprocessorsandleavesasidedevelopmentsconductedonfieldprogrammablegatearray(FPGA)andapplication-specificintegratedcircuits(ASICs)platforms.Datacollectionsystems(i.e.,front-ends)havealwaysbeenofparamountimportanceforGNSSSDRs,andarethuspartlycoveredinthiswork.TheworkrepresentstheknowledgeoftheauthorsbutisnotmeantasacompletedescriptionofSDRhistory.
KEYWORDS
GNSS,software-definedradio
1IINTRODUCTION
Receiverdevelopmenthasalwaysbeenanintegralpartofsatellitenavigation,eversincetheearlystudiesconductedfortheU.S.GlobalPositioningSystem(GPS).Theveryfirstreceiverswerehugedevices,realizingthecorrelationofthereceived
satellitesignalwithinternallygeneratedcodeandcarrierreplicasbyamixtureofdigitalandanalogelectronics(Eissfeller
&Won,
2017)
.Advancesinsemiconductortechnologysoonenabledsignalprocessingondedicatedchips.ThistechnologywasofcoursecomplextohandleandmostlylocatedwithintheU.S.industry.DespitethesuccessofGPSanditsRussiancounterpartGlobalnayaNavigazionnayaSputnikovayaSistema(GLONASS),receiverinternaltechnologywasbarelyaccessibletothebroaderresearchcommunityforalongtime,asitseemedtobeimpossibletorealizeGNSSsignalprocessingonlow-costcomputers.Evenintheyear1996akeyreceiverdesignpioneerexpressedskepticismthatgeneralpurposemicroprocessors
were,orwouldeverbe,asuitableplatformforimplementingaGNSSreceiver(Kaplan,
1996)
.
2
ThesituationradicallychangedwhenthealgorithmsofaGPSreceiverwerefirstimplementedasMatlabsoftwareonadesktoppersonalcomputer(PC)andestimatesofdigitalsignalprocessor(DSP)resourcesrequiredtorunthealgorithmsinreal-time
wereencouraging(D.Akos&Braasch,
1996;
D.M.Akos,
1997)
.Soonafter,real-timeprocessingwasdemonstratedevenonconventionalPCsandthewidespreaduseofsoftwareradiotechnologytookoffwithexponentialgrowth.Interestingly,softwareradiotechnologydidnotreplaceexistinghardwarereceiversusuallyrealizedasoneormoreASICs,butcomplementedthese,allowingresearcherstoeasilyimplementandtestnewalgorithmsortodevelophighlyspecializedreceiverswithreasonableeffort.Today,thisisawell-establishedapproachformilitary,scientific,andevencommercialapplicationsasdescribedby
Curran
etal.
(2018)
.
Asdifferentresearchgroupsdevelopedtheirownsoftwareradios,theyuseddifferentdatacollectionsystemstosampletheGNSSsignals.WhereasthedataformatofthedigitalGNSSsignalstreamsiscomparablyeasytodescribe,thewidespreaduseofsoftwareradiotechnologymadeitnecessarytointroduceacertainlevelofstandardization,whichwasfinallyachievedbyagroupofresearchersasdocumentedby
Gunawardenaetal.
(2021)
.Theresultwastheso-
calledIONSDRStandard(IONSDR
WorkingGroup,
2020)
.
Astechnologyfurtherevolved,newGNSSsoftwareradiosemergedandsomedeficienciesoftheIONSDRStandardbecame
apparent(Clementsetal.,
2021)
.Theseconditionspromptedthepresentpaper,whosecontributionsarefour-fold.First,itpresentsthefirsthistoryofGNSSSDRdevelopment(Section
2)
.Second,itoffersadetaileddescriptionofselectGNSSSDRs(Section
3)
.Third,itoverviewsrecentfront-enddevelopments(Section
4)
.Finally,itsummarizesthehistoryoftheIONSDRStandardandproposesanupdatethereto(Section
5)
.
2GNSSSOFTWAREDEFINEDRADIOHISTORY
ThehistoryofGNSSSDRrequiresmorethanabitofrecollection,whichcanbefraughtwithinaccuracies,noneofwhichareintentionalinthepresentwork.Correctionswouldalwaysbewelcome.
GNSSSDRtracesitsrootstoOhioUniversity’sAvionicsEngineeringCenteraround1994.ProfessorMichaelBraasch,anewly-mintedfacultymemberoftheElectricalandComputerEngineeringDepartmentandalreadyrecognizedasanexpertinGNSSmultipath,wasinterestedincreatingahigh-fidelitysimulationoftheinternalsignalprocessingwithinGPSandGLONASSreceivers.DennisAkos,aPh.D.studentintheDepartment,wasintriguedbytheidea.Alreadyharboringakeeninterestincomputerscienceandprogramming,AkostookonthesimulationprojectatBraasch’srequestundertheFAA/NASAJointUniversityProgram.Meanwhile,publicationof“TheSoftwareRadioArchitecture”inthe1995IEEECommunication
Magazine(Mitola,
1995)fueledAkos’sandBraasch’sthinkingthatthis“simulation”couldinsteadbetargetedtowardanactual
softwareradioimplementation.TheresultwasthefirstpublicationonGNSSSDR,whichappearedintheproceedingsofthe
1996IONAnnualMeeting(D.Akos&Braasch,
1996)
.
Developmentofthisinitialsimulation/implementationwassignificantlyfurtheredthroughcooperationwithDr.JamesB.Y.TsuiofWrightPattersonAirForceBase.Well-recognizedasanexpertindigitalreceivers,Tsuihadrecentlytakenaninterestinsatellitenavigation.In1995,twosummerinterns,DennisAkosfromOhioUniversityandMichaelStockmasterfromTheOhioStateUniversity,workedunderTsui’sguidancetodevelopaMatlabimplementationofthesignalprocessingrequiredforbasicGPSreceiveroperation.AdigitaloscilloscopewasusedtocapturetheinitialIFdatathatwerecriticaltodevelopinganddebuggingthoseearlyalgorithms.Akoswasresponsibleforthelower-levelsignalprocessing(acquisitionaswellascode/carriertracking),whileStockmasterimplementedthenavigationsolution.ThecumulativeresultwasthefirsteverGPSSDRimplemen-tation.Althoughfullyoperational,itwas“slowasmolasses”:processing30secondsofIFdatarequiredhoursofcomputationtime.
TsuipublishedthefirsttextbookonGPSSDRin2000(Tsui,
2000)
.Aparallelcontributionofthisinitialeffortwasthedirectradiofrequency(RF)samplingfront-end,whichgarneredsignificantinterestandpushedadvancesinanalog-to-digital
converterdevelopment(D.Akosetal.,
1999)
.
AfterreceivinghisPh.D.in1997,AkosstartedhisacademiccareerasanAssistantProfessorintheSystemteknikDepartmentofLule?UniversityofTechnologyinSweden,wherehetaughtacourseoncomputerarchitecture.ItwasherethatGPSSDRfirstachievedrealtimeoperation.Foraclassproject,AkosprovidedaMatlab-basedGPSSDRandchallengedagroupofstudentsto“getittorunasfastaspossible”subjecttotherequirementthatthecomplexaccumulationproductsforeachchannelwerewithin10%ofthoseproducedbytheoriginalMatlab-basedGPSSDR.Itwasin1999thatthefirst“realtime”operationwaspossible,processing60secondsofIFdatain55seconds.ThiswasanotableachievementatthetimegiventhatrenownedGPSexpertPhilipWard,whowasresponsibleforsomeofthefirstGPSreceivers,hadrecentlyexpressedskepticismabouttheprospectofa
3
fullysoftware-definedreal-timeGPSSDR,writing“Theintegrate-and-dumpaccumulatorsprovidefilteringandresamplingattheprocessorbasebandinputrate,whichisaround200Hz[...and]wellwithintheinterruptservicingrateofmodernhigh-speedmicroprocessors.Butthe5-
to50-MHzrates[ofintermediatefrequencysamples]wouldnotbemanageable”(Kaplan,
1996)
.ThisrealtimeimplementationeffortwasledbystudentPer-LudvigNormarkandledtotheresultspublishedby
D.M.Akoset
al.
(2001)
.
Inthemeantime,KaiBorre,ageodesyprofessorfromAalborgUniversity,hadalsodevelopedinthemid-late1990sMatlabcodeforGPSreceivers.Borre’scodefocusedonthenavigationblockandincludingfunctionsforconversionofcoordinatesandtimereferences,satellitepositiondetermination,andatmosphericcorrections.ThejointeffortsofAkos,Borre,andothers
wouldlaterleadtothewell-knownbook(Borreetal.,
2007),aprimaryreferenceforGNSSSDRoverthenextyears,andthe
relatedSoftGPSMatlabreceiver.
Upongraduation,NormarkcontinuedhisGNSSreceiverdevelopmentwiththeGPSLaboratoryatStanfordUniversityandthenreturnedhometoSwedenwhereheco-foundedNordNavTechnologies,whichdevelopedthefirstGalileoSDR,andhelpedestablishthearchitecture,togetherwithCambridgeSiliconRadio(CSR),topushGNSStoapricepointacceptabletothemobilephoneadoption.CSR,atthetimeadominantsupplierofBluetoothhardwaretothemobilephonemarket,acquiredNordNavin2006andtheyjointlyredesignedtheCSR2.4GHzradiotomultiplextothe1575.42MHzGPSL1band,exploitingthefactthatmostBluetoothapplicationshavearelativelylowdutycycle.Thisapproach,coupledwiththereal-timesoftwareGPSimplementation,providedanear-zero-added-costGPSreceiver.
TherehavebeennumerouscontributionstoGNSSSDRdevelopmentsincetheseearlyyears,manyofwhicharefromtheco-authorsofthispaper.SelecteddevelopmentsbytheauthorsareoutlinedinSection
3
includingasurveyofachievementsbyotherresearchersinSection
3.11.
Theauthorsareawarethatmanyotherimportantcontributionsaremissing,andmakenoclaimsofestablishingacomprehensivedescription.Inordertogivethereaderabetterorientationaboutthechronologicalorderofalldevelopments,wepresentTab.
1,reiteratingthattheselectionofreferencesispartlysubjectiveandoftensimilardevelopments
havebeencarriedoutbyseveralresearchgroups.ThetimelinedemonstratestheflexibilityofSDRtechnology,i.e.,thesamecodebaseisusedforGPSL1C/Acodesignalsandforsignalsofopportunity(SOP)fromcellularterrestrialtransmittersorfromcommunicationsatellitesinlowEarthorbit(LEO).
3CURRENTSTATUSOFGNSSSOFTWAREDEFINEDRADIOS
InJune2023,aquickinternetsearchdidnotrevealanycomprehensivelistingofallGNSSSDRsand
Wikipedia
(2023)lists
sevenentries,whichisfarbelowthenumberofreceiversknownbytheauthors,evenifthefollowingcriterionisappliedtolimitthescope:aGNSSSDR(orsoftwarereceiver)isdefinedasapieceofsoftwarerunningonageneralpurposecomputerconvertingsamplesofareceivedGNSSsignalintoapositionvelocityandtime(PVT)estimate.Itisclearlyunderstoodthatafront-endincludinganalog-to-digitalconversion(ADC)isrequiredtosamplethereceivedsignal,butotherthanthatnofurtherfunctionalityisallowedtoberealizedviahardware.Withthisdefinition,threecategoriesofsoftwarereceiverscanbeintroduced:
real-timereceivers:monolithicormodularsoftwarepackageswritteninanefficientlow-levelprogramminglanguage(likeCorC++)typicallyoptimizedforrun-timeefficiencyandstability
teaching/researchtools:softwarepackageswritteninahighlevelprogramminglanguagelikePythonorMatlaboptimizedforcodereadabilityandflexibility
snapshotreceivers:receiversoptimizedforveryshortbatchesofsignalsamples
Furthermore,thesoftwarepackageshallallowsomeconfigurationflexibilityand(atleasttheoretically)supporttheIONSDRStandard.Thefollowingsubsectionsintroduceafewselecteddevelopments,emphasizingtherationalebehinddesignchoicesandcurrentstatus.Eachsub-sectionisrepresentedbyoneentryinTab.
2
togivethereaderaquickoverviewofthemaincharacteristicsofeachdevelopment.Section
3.1
describestheworkofPsiaki,Ledvina,andHumphreysandtheireffortsinreal-timeprocessingonDSPswiththebit-wise-parallelapproachprovingtobehighlysuccessfulevenforspaceapplications.Section
3.2
coversworkofPany/othersintheireffortswithmulticonstellation/multifrequencyGNSS.Section
3.3
andSection
3.4
covertheeffortsofBorreandothersinareadableopensourceMatlabGPSSDRstartedin(Borreetal.,
2007),withthemost
recentGNSSupdatereportedin
Borreetal.
(2022)
.Akoshasalsocontinuedthisacademicdevelopmentofasuiteofopen
sourceGNSSSDRs(Bernabeuetal.,
2021)
.Thewidelyusedopen-sourcereceiverGNSS-SDRisdescribedinSection
3.5.
4
TABLE1TimelineofGNSSSDRdevelopments
Year
Milestonewithcomment
Reference
1995
Emergenceofsoftwareradioapproach
(Mitola,
1995)
1996
FirstpublicationofaGPSSDRdevelopment
(D.Akos&Braasch,
1996)
1999
Firstreal-timesoftwarereceiverwithGPSL1C/Acode
(D.M.Akosetal.,
2001)
2000
FirsttextbookonGPSSDRpublished
(Tsui,
2000)
2002+
Useofbit-wisecorrelationandSIMDinstructions
(Ledvinaetal.,
2003;
Panyetal.,
2003)
2002+
GNSSSDRsascommercialproducts
NordNav,IFEN,Trimble,LocusLock,...
2004
Firstmulti-GNSS/multi-frequencyGNSSSDRs
(Ledvina,Psiaki,Sheinfeld,etal.,
2004;
Pany,
Eissfeller,etal.,
2004)
2004
Firstreal-timeGNSS/INSintegrationwithSDR
(Gunawardenaetal.,
2004)
2005
GNSSSDRconsolidationatPolitecnicodiTorinoandLINKSFoundation
Section
3.9
2005
DemonstrationofvectortrackingwithaGNSSSDR
(Panyetal.,
2005)
2006
Firstreal-timeall-in-viewembeddableGNSSSDR
(T.Humphreysetal.,
2006)
2006
FirstuseofSDRtechnologyforAMsignalsofopportu-nity
(McEllroy,
2006;
McEllroyetal.,
2006)
2007
Startofwide-spreadadoptionofSDRtechnologyinGNSSresearch
(Borreetal.,
2007)
2007
Firstdevelopmentofasnapshotreceiver
Section
3.8
2009
Firstmulti-coreGNSSSDR
(T.E.Humphreysetal.,
2009)
2010
Adoptionofacomputersciencebestpracticecollabora-tiveframework
Section
3.5
2010
FirstuseofGPUsforcorrelation
(Hobigeretal.,
2010)
2011+
UseofGNSSSDRforionosphericresearch
(O’Hanlonetal.,
2011;
Peng&Morton,
2011)
2012+
SDRdevelopmentsattheFinnishGeospatialResearchInstitute
(Borreetal.,
2022;
S?derholmetal.,
2016)
2012
UseofaDVB-Tultra-low-costfront-endforGNSSSDR
Section.
3.5
2012+
UseofSDRtechnologyforLTEsignalsofopportunity
(delPeral-Rosadoetal.,
2013;
Driussoetal.,
2017;
Shamaeietal.,
2018)
2014+
UseofGNSSSDRsinspace
(Lightseyetal.,
2014;
Murrianetal.,
2021)
2014
UseofSDRsformixedcellular3GGSM/CDMAandDTVSOP
(Yangetal.,
2014)
2015+
AbundanceofprocessingpowerforGNSSSDRavailable
(Dampfetal.,
2015;
Nicholsetal.,
2022)
2017+
UseofSDRsfor3GCDMAand4GLTESOP
(Kassasetal.,
2017)
2018
FirstuseofPythonfordedicatedteachingofGNSSSDR
Section
3.7
2018
FirstSDRenablingsub-meter-levelcarrier-phase-basedUAVnavigationwith3GCDMAand4GLTESOP
(Khalife&Kassas,
2018
2022)
2020
FormaladoptionofIONSDRStandard
Section
5
2020
UseofSDRforstationarypositioningwithmulti-constellationOrbcommandIridiumLEOSOP
(Farhangian&Landry,
2020;
Orabietal.,
2021)
2021
FirstSDRfor5GSOP
(Shamaei&Kassas,
2021b)
2021+
UseofGNSSSDRtosupportdevelopmentofnewnavi-gationsatellitesystems
(Milleretal.,
2023;
Songetal.,
2021)
2021
FirstSDRenablingvehiclenavigationwithmulti-constellationLEOSOP
(Kassasetal.,
2023
2021)
2022
FirstSDRenablingaircraftnavigationwithcellularSOP
(Kassas,Abdallah,etal.,
2022;
Kassas,Khalife,
Abdallah,Lee,Jurado,etal.,
2022)
5
TABLE2OverviewofGNSSSDRsdiscussedinSection
3
Name
Mainlan-guage
Opensource
Mainfocus
GRID
C++
No
Real-timeoperationofadvancedalgorithmsonembeddeddevices
MuSNAT
C++
No
Analysisofnavigationsignalprocessingandalgorithmprototyping
SoftGPS
MATLAB
Yes
SuiteofGNSSSDRswithwidespreaduseandaccompanyingbook
FGI-GSRx
MATLAB
Yes
Multi-GNSSSDRwithaccompanyingbook
GNSS-SDR
C++
Yes
Real-timeSDRwithmodularstructureandwidespreaduse
AutoNav-SDR
MATLAB
No
SupportforKPS-development,API,andGPU
PyChips
Python
No
Multi-GNSSandoptimizedforuseinteachingclasses
UABSnapshotGNSSReceiver
MATLAB
No
Snapshotreceiverthatcanbeoperatedinthecloud
NGene
ANSIC
No
EfficientGNSSSDRusedinnumerousGalileo-relatedprojects
MATRIX
MATLAB,C++
No
CombinedprocessingofGNSSwithcellular3G/4G/5GandLEO(Starlink,OneWeb,Orbcomm,Iridium,andGlobalstar)signals
TheAUTONAVreceiverusedtosupportthedevelopmentofKoreanPositioningSystem(KPS)isdiscussedinSection
3.6
andPyChips(cf.Section
3.7)isthebasisfortutorialclassesoftheION
.TheUABsnapshotGNSSsoftwarereceiverisdescribedinSection
3.8,whileSection
3.9
discussesaSDRusede.g.totheauthenticationschemes,reflectometryortoassesstheinfluenceofnon-standardGNSStransmissions.Section
3.10
extendsthescopeofSDRtonon-GNSSsignals.
WhereasatthebeginningoftheGNSSSDRdevelopmentthedifferentreceiverswerelinkedtospecificpersonsorresearchinstitutes,todayoftendifferentreceivers,toolsorcodebasesareusedatthesameinstitute.Ontheotherhand,codebasesfirstdevelopedbyasingleinstitutespreadintodifferentinstitutes.Forexample,thedevelopmentsof
Borreetal.
(2007)forkedinto
severalbranches[e.g.
(Bernabeuetal.,
2021;
FGI,
2022;
Zhang,
2022)],asdiscussedinSection
3.3
andSection
3.4.
3.1Bit-WiseParallelismandtheEmergenceofGRID
Theoriginalreal-timeGNSSsoftwareradioworkby
D.M.Akos
(1997)inspiredaneffortwithintheCornellGPSgroup
.Psiakihadbeenworkingwithnon-real-timesoftwareGNSSsignalprocessinginMatlabforabouttwoyearswhenhestartedtowonderwhethertheslowMatlaboperationscouldbetranslatedtoruninreal-timeonageneraldesktopworkstation.ThebottleneckinGNSSdigitalsignalprocessingoccurswhendoingtheoperationsthatinitiallyprocessthehigh-frequencyRFfront-endsamples.RFfront-endstypicallysampleat4MHzorfaster.A12channelreceiverwouldhavetoperformontheorderof400millionoperationspersecondormoreinorderdoalloftheneededsignalprocessing.Psiakiconceivedtheconceptofbit-wiseparallelprocessingasameansofaddressingthischallenge.Herecruitedthen-Ph.D.candidateBrentLedvinatomakeanattemptatimplementingtheseideasintheCprogramminglanguageonaReal-TimeLinuxdesktopworkstation.Ledvinasucceededin
developinga12-channelreal-timeL1C/A-codereceiverafterabout6months’effort(Ledvinaetal.,
2003)
.
Themainconceptofbit-wiseparallelismistoworkefficientlywithRFfront-enddatathathavealownumberofquantizationbits.IfanRFfront-endproducesa1-bitdigitaloutputstream,then32successivesign-bitsamplescanbestoredinasingle32-bitunsignedintegerwordonageneral-purposeprocessor.Thirty-twosuccessiveoutputsamplesofa2-bitRFfront-endcanbestoredintwo32-bitwords,onecontainingthesuccessivesignbitsandtheothercontainingthesuccessivemagnitudebits.Eachchannelofthesoftwarereceivergeneratesa1-bitora2-bitrepresentationof32successivesamplesofitsIFcarrierreplica,bothin-phaseandquadrature,andthesuccessivesamplesarestoredinparallelin32-bitunsignedintegerwords.Similarly,itgeneratesa1-bitrepresentationof32successivesamplesofitspromptpseudo-randomnoise(PRN)codereplicaandstorestheminparallelinasingle32-bitunsignedintegerword.Italsogeneratesanearly-minus-latePRNcodereplicathatrequires1.5bitspersample,whichtakesuptwo32-bitunsignedintegerwordstostore32samples.Thesereplicasignalscanbegeneratedveryefficientlybyusingpre-tabulated32-bitwords.Thesoftwarereceiverthenperformsaseriesofbit-wiseAND,OR,XOR,andsimilaroperationsthathavetheeffectofperformingPRNcodemixingandIF-to-basebandcarriermixing.Theoutputsofthemixingoperationsarecontainedinasmallnumberof32-bitwords,thenumberofwhichdependsonthenumberofbitsineachRFfront-endoutputsampleandthenumberofbitsintheIFcarrierreplicas.
6
Thefinaloperationisaccumulationoftheresultsinthe32-bitwords.Thisinvolvessetsofbit-wiseBooleanoperations,asper
Ledvinaetal.
(2003),followedbysummationofthenumberof1-bitsintheresulting32-bitunsignedintegerwords
.Thebitsummationoperationsprovedtobeachallengeintermsofminimizingexecutiontime.Ledvinasolvedthisproblembyusingapre-computed1-dimensionaldatatablewhoseinputwastheunsignedintegerandwhoseoutputwasthenumberof1-bits.Inordertokeepthetablesizereasonable,itonlycountedthebitsina16-bitunsignedintegerword.Theoriginalreceiver’s32-bitwordsweresplitinhalf,twotablelook-upswereperformed,andtheresultssummedinordertocountallthe1-bits.Theoriginalalgorithmsaredefinedby
Ledvinaetal.
(2003),
Ledvina,Psiaki,Powell,&Kintner
(2004),and
Ledvina,Psiaki,Powell,&
Kintner
(2006)
.
WhenusingverylongPRNcodes,suchastheL2CCLcode,theoriginalmethod’swhole-periodPRNcodetablesoftheproper32-bitwordsatvariouscodephasesbecameimpracticallylarge.Therefore,anewmethodwasdevelopedforlongPRNcodes.Ittabulates32-bitwordsofshortgenericPRNcodechipsequences,withallpossiblecombinationsofashortsequencesofchipsconsideredatvariousPRNcodeoffsetsrelativetothestartofthesamplesofthe32-bitword.Thosemethodsaredescribedby
Psiaki
(2006)andby
Ledvinaetal.
(2007)
.Thistechniqueprovedinvaluablefordealingwithlongcodes.
Aprocessorthatcanoperateonwidersegmentsofdata,upto512bitsforcurrentsingleinstructionmultipledata(SIMD)
instructions,gainssubstantialadditionalsignalprocessingspeedincreases(Nicholsetal.,
2022)
.Note,however,thatthespeedincreasefactorsoverbrute-forceintegercalculationsaretypicallynotashighasthenumberofbitsperword.Thatis,thetechniquesdonotspeeduptheoperationsbyafactorof32whenprocessing32samplesinparallelbyusing32-bitwordstorepresent32samples.Fora2-bitRFfront-endanda32-bitprocessor,thespeed-upfactormightbeonly4becausethebit-wiseparallelapproachrequiresmultipleoperationsdueto,say,asimplemultiplicationofonetimeseriesbyanother.Ifonedoublesthenumberofbitsperword,however,thenthespeedtendstodouble.Aparticularlyhelpfulfeatureofsomerecentprocessordesignsistheirinclusionofahardwiredcommandtocountallthe1bitsinaword.This“popcount”intrinsicobviatesthetablelook-upsthatcounted1-bitsintheoriginalbitwiseparalleldesign.IfthenumberofbitsincreasesintheRFfront-endsamplesand/ortheIFcarrierreplicas,however,thenthebit-wiseparallelmethodofsignalprocessingslowsdown.Signalsrepresentedby3or4bitsmightcausetheprocessingspeedgainsofbit-wiseparallelalgorithmstobelimitedorevennon-existent.
Aftergettingthebasicalgorithmsworkinginreal-timeusing32-bitwords,theCornellgroupshowcasedtheefficacyofreal-timeGNSSsoftwareradiobyusingthetechniquestodevelopadual-
frequencyL1C/AandL2Creceiver(Ledvina,Psiaki,
Sheinfeld,etal.,
2004)andaGPS/GalileoL1civilianreceiver(Ledvina,Psiaki,Humphreys,etal.,
2006)
.Thesereal-timesoftwareGNSSreceiverseachrequiredonlyseveralperson-daystodevelopthemfromtheoriginalL1C/Acodereceiver.Ofcourse,theL1/L2receiverrequiredanewdual-frequencyRFfront-end.TheGPS/GalileoreceiverrequiredknowledgeofthecivilianGalileoE1PRNcodes,whichhadnotbeenpublishedatthattime.ThisrequirementledtoasupportingeffortwhichsuccessfullydeducedtheGalileoGIOVE-AE1PRNcodesbyrecordingtheirrawRFfront-endsamplesandpost-processingthosesamplesusingasuiteofcustom-designedSDRsignalprocessingalgorithmsinordertopullthechipsoutofthenoise
(Psiakietal.,
2006)
.
Thenextdevelopmentwastore-implementthebit-wiseparallelcodeforembedded(low-power,low-cost)processing.Ini-tiallytargetingaTexasInstrumentsDSP,thisworkwasaccomplishedin2006bythen-Ph.D.candidateToddHumphreys
(T.Humphreysetal.,
2006)
.Later,asaprofessoratTheUniversityofTexasatAustin,Humphreysandhisstudents—notablyJahshanBhattiandMatthewMurrian—undertook
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東外語外貿(mào)大學(xué)《營養(yǎng)生理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東司法警官職業(yè)學(xué)院《別墅建筑設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東生態(tài)工程職業(yè)學(xué)院《西方經(jīng)濟(jì)學(xué)(下)》2023-2024學(xué)年第一學(xué)期期末試卷
- 七年級上冊《6.2.1直線、射線、線段》課件與作業(yè)
- 廣東南華工商職業(yè)學(xué)院《色彩靜物及人物頭像》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東梅州職業(yè)技術(shù)學(xué)院《計(jì)算機(jī)創(chuàng)客訓(xùn)練》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東茂名健康職業(yè)學(xué)院《半導(dǎo)體器件原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 一年級數(shù)學(xué)計(jì)算題專項(xiàng)練習(xí)1000題匯編
- 2024八年級地理上冊第三章自然資源-我們生存和發(fā)展的物質(zhì)基礎(chǔ)學(xué)情評估晉教版
- 【2021屆備考】2020全國名校物理試題分類解析匯編(11月第二期)A4-豎直上拋運(yùn)動
- 2025年國務(wù)院發(fā)展研究中心信息中心招聘應(yīng)屆畢業(yè)生1人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年公安機(jī)關(guān)理論考試題庫500道及參考答案
- 2024年全國《國防和兵役》理論知識競賽試題庫與答案
- 特殊情況施工的技術(shù)措施
- 企業(yè)知識產(chǎn)權(quán)保護(hù)策略及實(shí)施方法研究報(bào)告
- 2024年07月11026經(jīng)濟(jì)學(xué)(本)期末試題答案
- 2024年中小企業(yè)股權(quán)融資合同3篇
- 2024年01月11289中國當(dāng)代文學(xué)專題期末試題答案
- 2024年秋季生物教研組工作計(jì)劃
- 2024年云南高中學(xué)業(yè)水平合格考?xì)v史試卷真題(含答案詳解)
- 大學(xué)物理(二)知到智慧樹章節(jié)測試課后答案2024年秋湖南大學(xué)
評論
0/150
提交評論