版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年滬科新版高一數(shù)學上冊月考試卷含答案考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四五總分得分評卷人得分一、選擇題(共5題,共10分)1、若平面向量兩兩所成的角相等,且則等于()A.B.C.或D.2、【題文】不等式的解集是()A.B.C.D.3、【題文】函數(shù)的圖象過定點()A.(0,)B.(0,1)C.(1,0)D.(0)4、已知向量=(3,2),=(x,4)且∥則x的值是()A.-6B.6C.D.-5、半徑為15cm,圓心角為216°的扇形圍成圓錐的側(cè)面,則圓錐的高是()A.14cmB.12cmC.10cmD.8cm評卷人得分二、填空題(共8題,共16分)6、對于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2);有如下結(jié)論:
①f(x1+x2)=f(x1)?f(x2);
②f=f(x1)+f(x2);
③>0;
④.
當f(x)=lgx時,上述結(jié)論中正確結(jié)論的序號是____.7、方程的解集為{x∈R|2x2-3x-2=0},用列舉法表示為____.8、已知方程表示一個圓.的取值范圍____9、函數(shù)按向量平移后得到函數(shù)則.10、給出以下四個問題,①x,輸出它的相反數(shù).②求面積為6的正方形的周長.③求三個數(shù)a,b,c中輸入一個數(shù)的最大數(shù).④求函數(shù)的函數(shù)值.其中不需要用條件語句來描述其算法的有____個.11、若半徑為2的圓心角所對的弧長為4cm,則這個圓心角大小為______.(用弧度制表示)12、在?ABCD中,==M為BC的中點,則=______(用來表示)13、不等式log(2x+1)≥log3的解集為______.評卷人得分三、證明題(共7題,共14分)14、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點,DF⊥BE,垂足為F,CF交AD于點G.
求證:(1)∠CFD=∠CAD;
(2)EG<EF.15、求證:(1)周長為21的平行四邊形能夠被半徑為的圓面所覆蓋.
(2)桌面上放有一絲線做成的線圈,它的周長是2l,不管線圈形狀如何,都可以被個半徑為的圓紙片所覆蓋.16、AB是圓O的直徑,CD是圓O的一條弦,AB與CD相交于E,∠AEC=45°,圓O的半徑為1,求證:EC2+ED2=2.17、已知ABCD四點共圓,AB與DC相交于點E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點,求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.18、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點,DF⊥BE,垂足為F,CF交AD于點G.
求證:(1)∠CFD=∠CAD;
(2)EG<EF.19、如圖,設(shè)△ABC是直角三角形,點D在斜邊BC上,BD=4DC.已知圓過點C且與AC相交于F,與AB相切于AB的中點G.求證:AD⊥BF.20、已知ABCD四點共圓,AB與DC相交于點E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點,求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評卷人得分四、作圖題(共4題,共32分)21、作出函數(shù)y=的圖象.22、畫出計算1++++的程序框圖.23、請畫出如圖幾何體的三視圖.
24、某潛艇為躲避反潛飛機的偵查,緊急下潛50m后,又以15km/h的速度,沿北偏東45°前行5min,又以10km/h的速度,沿北偏東60°前行8min,最后擺脫了反潛飛機的偵查.試畫出潛艇整個過程的位移示意圖.評卷人得分五、綜合題(共1題,共6分)25、如圖,由矩形ABCD的頂點D引一條直線分別交BC及AB的延長線于F,G,連接AF并延長交△BGF的外接圓于H;連接GH,BH.
(1)求證:△DFA∽△HBG;
(2)過A點引圓的切線AE,E為切點,AE=3;CF:FB=1:2,求AB的長;
(3)在(2)的條件下,又知AD=6,求tan∠HBC的值.參考答案一、選擇題(共5題,共10分)1、C【分析】試題分析:三個向量兩兩所成角相等,即所成角為或代入數(shù)值,得到,1或5,故選C.考點:向量模的計算【解析】【答案】C2、C【分析】【解析】
試題分析:先將不等式轉(zhuǎn)化為結(jié)合二次函數(shù)的圖像可得二次不等式的解集為選C.
考點:二次不等式.【解析】【答案】C3、C【分析】【解析】本題主要考查的是對數(shù)函數(shù)的定點問題。令則所以應選C?!窘馕觥俊敬鸢浮緾4、B【分析】【解答】因為=(3,2),=(x,4)且∥
所以2x﹣3×4=0;解之可得x=6
故選B.
【分析】由向量平行的條件可得2x﹣3×4=0,解之即可。5、B【分析】【分析】設(shè)圓錐的底面半徑為r,則·360°=216°,解得r=9,所以圓錐的高是=12(cm).選B
【點評】圓錐的側(cè)面展開圖是扇形,扇形的弧長為圓錐底面的周長。二、填空題(共8題,共16分)6、略
【分析】
①f(x1+x2)=lg(x1+x2)≠f(x1)f(x2)=lgx1?lgx2
②f(x1?x2)=lgx1x2=lgx1+lgx2=f(x1)+f(x2)
③f(x)=lgx在(0,+∞)單調(diào)遞增,則對任意的0<x1<x2,d都有f(x1)<f(x2)
即
④=
∵∴
故答案為:②③
【解析】【答案】利用對數(shù)的基本運算性質(zhì)進行檢驗:①f(x1+x2)=lg(x1+x2)≠f(x1)f(x2)=lgx1?lgx2,②f(x1?x2)=lgx1x2=lgx1+lgx2=f(x1)+f(x2)③f(x)=lgx在(0,+∞)單調(diào)遞增,可得
④=由基本不等式可得從而可得
7、略
【分析】
解方程2x2-3x-2=0得。
x=2或x=
故方程2x2-3x-2=0的解集為{2,}
故答案為:{2,}.
【解析】【答案】解方程2x2-3x-2=0;易得到方程的兩個實數(shù)根,然后根據(jù)列舉法表示集合的方法,可得答案.
8、略
【分析】【解析】
因為方程表示一個圓,那么則有解得【解析】【答案】9、略
【分析】【解析】【答案】10、2【分析】【解答】解:對于①;輸入一個數(shù)x,輸出它的相反數(shù),不必事先判定,故不需要用條件語句;
對于②,求面積為6的正方形的周長,代入a2求出a后計算4a即可;不需要用條件語句;
對于③,求三個數(shù)a,b;c中的最大數(shù),必須先進行大小比較,要用條件語句;
對于④;求函數(shù)的函數(shù)值時,如果是分段函數(shù),則應先判定自變量的取值范圍,要用條件語句;
所以;不需要用條件語句來描述其算法的有①②.
故答案為:2.
【分析】①輸入一個數(shù)x;輸出它的相反數(shù),不必事先判定,不用條件語句;
②求面積為6的正方形的周長,利用a2求出a后計算4a;不用條件語句;
③求三個數(shù)a,b;c中的最大數(shù)時,需要先進行大小比較,用條件語句;
④求函數(shù)的函數(shù)值時,如果是分段函數(shù),則應先判定自變量的取值范圍,用條件語句;11、略
【分析】解:由題意可知,扇形圓心角的弧度數(shù)為:α===2.
故答案為:2.
直接利用弧長;半徑、圓心角公式;求出扇形圓心角的弧度數(shù).
本題考查扇形圓心角的弧度數(shù)的求法,是基礎(chǔ)題.【解析】212、略
【分析】解:∵四邊形ABCD為平行四邊形;
∴向量可得。
===
故答案為:
根據(jù)平行四邊形的性質(zhì)和平行向量的性質(zhì),得從而有=再由向量加法的三角形法則,可得本題答案.
本題給出平行四邊形ABCD一邊的中點M,求向量的線性表達式.著重考查了平行向量、向量的加法法則和平行四邊形的性質(zhì)等知識,屬于基礎(chǔ)題.【解析】13、略
【分析】解:由log(2x+1)≥log3;
得0<2x+1≤3,解得:<x≤1.
∴不等式log(2x+1)≥log3的解集為:.
故答案為:.
由對數(shù)函數(shù)的單調(diào)性化對數(shù)不等式為一元一次不等式求解.
本題考查對數(shù)不等式的解法,考查了對數(shù)函數(shù)的性質(zhì),是基礎(chǔ)的計算題.【解析】三、證明題(共7題,共14分)14、略
【分析】【分析】(1)連接AF,并延長交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點共圓即可;
(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
則=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四點共圓;
∴∠CFD=∠CAD.
(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四點共圓;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.15、略
【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對稱圖形,可讓覆蓋圓圓心與平行四邊形對角線交點疊合.
(2)“曲“化“直“.對比(1),應取均分線圈的二點連線段中點作為覆蓋圓圓心.【解析】【解答】
證明:(1)如圖1;設(shè)ABCD的周長為2l,BD≤AC,AC;BD交于O,P為周界上任意一點,不妨設(shè)在AB上;
則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周長為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.
(2)如圖2,在線圈上分別取點R,Q,使R、Q將線圈分成等長兩段,每段各長l.又設(shè)RQ中點為G,M為線圈上任意一點,連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G為圓心,長為半徑的圓紙片可以覆蓋住整個線圈.16、略
【分析】【分析】首先作CD關(guān)于AB的對稱直線FG,由∠AEC=45°,即可證得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易證得O,C,G,E四點共圓,則可求得CG2=OC2+OG2=2.繼而證得EC2+ED2=2.【解析】【解答】證明:作CD關(guān)于AB的對稱直線FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四點共圓.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.17、略
【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;
由圖知:∠FDC是△ACD的一個外角;
則有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四邊形ABCD是圓的內(nèi)接四邊形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分別是∠AFB、∠AED的角平分線;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)連接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可證得∠NEX=∠MEX;
故FX、EX分別平分∠MFN與∠MEN.18、略
【分析】【分析】(1)連接AF,并延長交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點共圓即可;
(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
則=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四點共圓;
∴∠CFD=∠CAD.
(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四點共圓;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.19、略
【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;
則AC=AE;AB=5DE;
又∵G是AB的中點;
∴AG=ED.
∴ED2=AF?AE;
∴5ED2=AF?AE;
∴AB?ED=AF?AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.20、略
【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;
由圖知:∠FDC是△ACD的一個外角;
則有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四邊形ABCD是圓的內(nèi)接四邊形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分別是∠AFB、∠AED的角平分線;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)連接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度倉儲物流倉儲場地租賃合同6篇
- 二零二五年度技術(shù)開發(fā)合同:人工智能助手定制開發(fā)服務3篇
- 2025年度LED燈具安裝與節(jié)能效果評估合同3篇
- 二零二五年度展覽館租賃合同交接與展覽服務標準協(xié)議3篇
- 二零二五年度文化產(chǎn)業(yè)園區(qū)開發(fā)合作協(xié)議3篇
- 二零二五年度人工智能領(lǐng)域股東合作協(xié)議書模板3篇
- 海南職業(yè)技術(shù)學院《數(shù)控加工力學和動力學》2023-2024學年第一學期期末試卷
- 海南衛(wèi)生健康職業(yè)學院《中小學音樂教學實訓》2023-2024學年第一學期期末試卷
- 課程設(shè)計洗瓶器
- 護理博士課程設(shè)計
- 新疆塔城地區(qū)(2024年-2025年小學六年級語文)部編版期末考試(下學期)試卷及答案
- 四人合伙投資協(xié)議書范本
- 反射療法師3級考試題庫(含答案)
- 汽車供應商審核培訓
- 山東省濟南市2023-2024學年高二上學期期末考試地理試題 附答案
- 期末復習試題1(試題)-2024-2025學年二年級上冊數(shù)學北師大版
- 1《地球的表面》說課稿-2024-2025學年科學五年級上冊教科版
- 汽車以租代購合同完整版完整版
- 音樂制作基礎(chǔ)知識單選題100道及答案解析
- 2024至2030年大型儲油罐項目投資價值分析報告
- GB/T 44764-2024石油、石化和天然氣工業(yè)腐蝕性石油煉制環(huán)境中抗硫化物應力開裂的金屬材料
評論
0/150
提交評論