2025年岳麓版高一數(shù)學(xué)上冊月考試卷_第1頁
2025年岳麓版高一數(shù)學(xué)上冊月考試卷_第2頁
2025年岳麓版高一數(shù)學(xué)上冊月考試卷_第3頁
2025年岳麓版高一數(shù)學(xué)上冊月考試卷_第4頁
2025年岳麓版高一數(shù)學(xué)上冊月考試卷_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年岳麓版高一數(shù)學(xué)上冊月考試卷385考試試卷考試范圍:全部知識點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五總分得分評卷人得分一、選擇題(共9題,共18分)1、集合A={x|y=},B={y|y=x2+2};則陰影部分表示的集合為()

A.{x|x≥1}

B.{x|x≥2}

C.{x|1≤x≤2}

D.{x|1≤x<2}

2、【題文】在平面直角坐標(biāo)系內(nèi),若曲線上所有的點(diǎn)均在第二象限內(nèi),則實(shí)數(shù)的取值范圍為()A.B.C.D.3、【題文】已知函數(shù)=則函數(shù)的最小值及對稱軸方程分別為()A.-24,-2015B.24,x=“-2015”C.24,x=“2015”D.-24,x=-20154、【題文】直線的位置關(guān)系()A.相交B.相切C.相離D.相交或相切5、【題文】棱長都為的四面體的四個(gè)頂點(diǎn)在同一球面上,則此球的表面積為()A.B.C.D.6、【題文】將轉(zhuǎn)化為對數(shù)形式,其中錯(cuò)誤的是().A.B.C.D.7、對于直線m,n和平面α,β,能得出α⊥β的一個(gè)條件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n?αC.m∥n,n⊥β,m?αD.m∥n,m⊥α,n⊥β8、一個(gè)單位有職工120人,其中業(yè)務(wù)人員60人,管理人員40人,后勤人員20人,為了了解職工健康情況,要從中抽取一個(gè)容量為24的樣本,如用分層抽樣,則管理人員應(yīng)抽到的人數(shù)為A.4B.12C.5D.89、.函數(shù)在區(qū)間的簡圖是()A.B.C.D.評卷人得分二、填空題(共5題,共10分)10、已知為銳角,則____.11、【題文】冪函數(shù)的圖象過點(diǎn)則____.12、【題文】函數(shù)的值域是__________13、【題文】函數(shù)的定義域?yàn)開___.14、某林場計(jì)劃第一年植樹造林10000畝,以后每年比前一年多造林20%,則第三年造林____畝.評卷人得分三、證明題(共6題,共12分)15、初中我們學(xué)過了正弦余弦的定義,例如sin30°=,同時(shí)也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計(jì)一種方案,解決問題:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面積S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.16、求證:(1)周長為21的平行四邊形能夠被半徑為的圓面所覆蓋.

(2)桌面上放有一絲線做成的線圈,它的周長是2l,不管線圈形狀如何,都可以被個(gè)半徑為的圓紙片所覆蓋.17、已知ABCD四點(diǎn)共圓,AB與DC相交于點(diǎn)E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點(diǎn),求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.18、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點(diǎn),DF⊥BE,垂足為F,CF交AD于點(diǎn)G.

求證:(1)∠CFD=∠CAD;

(2)EG<EF.19、如圖,已知:D、E分別為△ABC的AB、AC邊上的點(diǎn),DE∥BC,BE與CD交于點(diǎn)O,直線AO與BC邊交于M,與DE交于N,求證:BM=MC.20、如圖,設(shè)△ABC是直角三角形,點(diǎn)D在斜邊BC上,BD=4DC.已知圓過點(diǎn)C且與AC相交于F,與AB相切于AB的中點(diǎn)G.求證:AD⊥BF.評卷人得分四、計(jì)算題(共4題,共40分)21、若x2-6x+1=0,則=____.22、若不等式|2x+1|-|2x-1|<a對任意實(shí)數(shù)x恒成立,則a的取值范圍是____.23、如圖,D是BC上一點(diǎn),E是AB上一點(diǎn),AD、CE交于點(diǎn)P,且AE:EB=3:2,CP:CE=5:6,那么DB:CD=____.24、已知x1、x2是方程x2-(k-3)x+k+4=0的兩個(gè)實(shí)根,A、B為x軸上的兩點(diǎn),其橫坐標(biāo)分別為x1、x2(x1<x2).O為坐標(biāo)原點(diǎn);P點(diǎn)在y軸上(P點(diǎn)異于原點(diǎn)).設(shè)∠PAB=α,∠PBA=β.

(1)若α;β都是銳角;求k的取值范圍.

(2)當(dāng)α、β都是銳角,α和β能否相等?若能相等,請說明理由;若不能相等,請證明,并比較α、β的大?。u卷人得分五、綜合題(共1題,共5分)25、已知關(guān)于x的方程(m-2)x2+2x+1=0①

(1)若方程①有實(shí)數(shù)根;求實(shí)數(shù)m的取值范圍?

(2)若A(1,0)、B(2,0),方程①所對應(yīng)的函數(shù)y=(m-2)x2+2x+1的圖象與線段AB只有一個(gè)交點(diǎn),求實(shí)數(shù)m的取值范圍?參考答案一、選擇題(共9題,共18分)1、D【分析】

由x-1≥0,得A={x|y=}={x|x≥1}=[1;+∞);

由x2+2≥2,得B={y|y=x2+2}=[2;+∞);

則圖中陰影部分表示的集合是CAB=[1;2).

故選D.

【解析】【答案】由題意分別求函數(shù)y=的定義域和y=x2+2的值域,從而求出集合A、B;再根據(jù)圖形陰影部分表示的集合是CAB求得結(jié)果.

2、D【分析】【解析】

試題分析:圓化成標(biāo)準(zhǔn)方程為:可知圓心坐標(biāo)為因?yàn)閳A上所有的點(diǎn)在第二象限內(nèi),故得到

考點(diǎn):圓的標(biāo)準(zhǔn)方程.【解析】【答案】D3、D【分析】【解析】解:∵f(x)=x2+10x+1=x2+10x+25+1-25="(x+5)"2-24

∴f(x+2010)=(x+2010+5)2-24=(x+2015)2-24

所以最小值是-24;對稱軸方程是x=-2015

故答案選D【解析】【答案】D4、D【分析】【解析】本題考查直線與圓的位置關(guān)系,點(diǎn)到直線的距離公式,基本不等式的應(yīng)用.

圓的圓心為(0,0),半徑為圓心、到直線的距離為

即則直線與圓相交或相切.故選D【解析】【答案】D5、A【分析】【解析】

借助立體幾何的兩個(gè)熟知的結(jié)論:(1)一個(gè)正方體可以內(nèi)接一個(gè)正四面體;(2)若正方體的頂點(diǎn)都在一個(gè)球面上,則正方體的對角線就是球的直徑??梢钥焖偎愠銮虻陌霃綇亩蟪銮虻谋砻娣e為故選A?!窘馕觥俊敬鸢浮?/p>

A6、D【分析】【解析】

試題分析:將轉(zhuǎn)化為對數(shù)式應(yīng)為即由換底公式;得。

故選項(xiàng)A,B,C正確;

而選項(xiàng)D:錯(cuò)誤;故選D.

考點(diǎn):指數(shù)式與對數(shù)式的互化、換底公式.【解析】【答案】D7、C【分析】【解答】解:在A中;m⊥n,m∥α,n∥β,則α與β相交或相行,故A錯(cuò)誤;

在B中;m⊥n,α∩β=m,n?α,則α與β不一定垂直,故B錯(cuò)誤;

在C中;m∥n,n⊥β,m?α,由由面面垂直的判定定理得α⊥β,故C正確;

在D中;m∥n,m⊥α,n⊥β,則由面面平行的判定定理得α∥β,故D錯(cuò)誤.

故選:C.

【分析】在A中,α與β相交或相行;在B中,α與β不一定垂直;在C中,由由面面垂直的判定定理得α⊥β;在D中,由面面平行的判定定理得α∥β.8、D【分析】【分析】由分層抽樣按比例抽取樣本個(gè)體可知,設(shè)抽取的管理人員為人,則所以即管理人員應(yīng)抽到的人數(shù)為8人.選D。9、A【分析】解:

=sinxcosx-

=

=sin(2x-)

當(dāng)x=-時(shí),函數(shù)值y=排除選項(xiàng)B;D

當(dāng)x=時(shí);函數(shù)值y=0,排除選項(xiàng)C

故選A

利用二倍角公式及輔助角公式先對已知函數(shù)進(jìn)行化簡,然后通過對2x-范圍的分析;通過對x取特值排除即可得到答案.

本題主要考查三角函數(shù)的圖象.對于正弦、余弦函數(shù)的圖象和性質(zhì)要熟練掌握,這是高考的重點(diǎn)考察內(nèi)容.【解析】【答案】A二、填空題(共5題,共10分)10、略

【分析】∵為銳角且∴∴【解析】【答案】11、略

【分析】【解析】

試題分析:設(shè)冪函數(shù)為把點(diǎn)代入得∴

考點(diǎn):本題考查了冪函數(shù)的定義。

點(diǎn)評:掌握冪函數(shù)的定義是解決此類問題的關(guān)鍵【解析】【答案】12、略

【分析】【解析】略【解析】【答案】____13、略

【分析】【解析】由題知:解得:x≥3.【解析】【答案】x≥314、略

【分析】本體考查了等比數(shù)列定義,以及求數(shù)列中特定項(xiàng),屬于基礎(chǔ)題.根據(jù)題意可知,三年造林?jǐn)?shù)恰好構(gòu)成等比數(shù)列,只需求出首項(xiàng)與公比,就可求第三年造林?jǐn)?shù).解:∵第一年造林10000畝;以后每年比前一年多造林20%;

∴第二年造林10000×(1+20%)=1200畝;第三年造林12000×(1+20%)=1440畝.

故填1440.【解析】1440三、證明題(共6題,共12分)15、略

【分析】【分析】(1)過點(diǎn)C作CE⊥AB于點(diǎn)E;根據(jù)正弦的定義可以表示出CE的長度,然后利用三角形的面積公式列式即可得解;

(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過點(diǎn)C作CE⊥AB于點(diǎn)E;

則CE=AC?sin(α+β)=bsin(α+β);

∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB?ACsin(α+β)=BD?AD+CD?AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.16、略

【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對稱圖形,可讓覆蓋圓圓心與平行四邊形對角線交點(diǎn)疊合.

(2)“曲“化“直“.對比(1),應(yīng)取均分線圈的二點(diǎn)連線段中點(diǎn)作為覆蓋圓圓心.【解析】【解答】

證明:(1)如圖1;設(shè)ABCD的周長為2l,BD≤AC,AC;BD交于O,P為周界上任意一點(diǎn),不妨設(shè)在AB上;

則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周長為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.

(2)如圖2,在線圈上分別取點(diǎn)R,Q,使R、Q將線圈分成等長兩段,每段各長l.又設(shè)RQ中點(diǎn)為G,M為線圈上任意一點(diǎn),連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G為圓心,長為半徑的圓紙片可以覆蓋住整個(gè)線圈.17、略

【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時(shí)發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實(shí)現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;

由圖知:∠FDC是△ACD的一個(gè)外角;

則有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四邊形ABCD是圓的內(nèi)接四邊形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分別是∠AFB、∠AED的角平分線;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)連接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可證得∠NEX=∠MEX;

故FX、EX分別平分∠MFN與∠MEN.18、略

【分析】【分析】(1)連接AF,并延長交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點(diǎn)共圓即可;

(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點(diǎn)共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

則=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四點(diǎn)共圓;

∴∠CFD=∠CAD.

(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四點(diǎn)共圓;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.19、略

【分析】【分析】延長AM,過點(diǎn)B作CD的平行線與AM的延長線交于點(diǎn)F,再連接CF.根據(jù)平行線分線段成比例的性質(zhì)和逆定理可得CF∥BE,根據(jù)平行四邊形的判定和性質(zhì)即可得證.【解析】【解答】證明:延長AM;過點(diǎn)B作CD的平行線與AM的延長線交于點(diǎn)F,再連接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

從而四邊形OBFC為平行四邊形;

所以BM=MC.20、略

【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;

則AC=AE;AB=5DE;

又∵G是AB的中點(diǎn);

∴AG=ED.

∴ED2=AF?AE;

∴5ED2=AF?AE;

∴AB?ED=AF?AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.四、計(jì)算題(共4題,共40分)21、略

【分析】【分析】兩邊都除以x求出x+,兩邊平方后能求出x2+的值,代入求出即可.【解析】【解答】解:∵x2-6x+1=0;

∴x-6+=0;

∴x+=6;

兩邊平方得:x2+2?x?+=36;

∴x2+=36-2=34;

∴x2+-1=34-1=33.

故答案為:33.22、略

【分析】【分析】將x的值進(jìn)行分段討論,①x<-,②-≤x<,③x≥,從而可分別將絕對值符號去掉,得出a的范圍,綜合起來即可得出a的范圍.【解析】【解答】解:當(dāng)①x<-時(shí);原不等式可化為:-1-2x-(1-2x)<a,即-2<a;

解得:a>-2;

②當(dāng)-≤x<時(shí);原不等式可化為:2x+1-(1-2x)<a,即4x<a;

此時(shí)可解得a>-2;

③當(dāng)x≥時(shí);原不等式可化為:2x+1-(2x-1)<a,即2<a;

解得:a>2;

綜合以上a的三個(gè)范圍可得a>2;

故答案為:a>2.23、略

【分析】【分析】過E點(diǎn)作EF∥BC,交AD于F.根據(jù)平行線分線段成比例得出EF:BD=3:(3+2)=3:5,EF:CD=(6-5):5=1:5=3:15,從而得解.【解析】【解答】解:過E點(diǎn)作EF∥BC;交AD于F.

∵AE:EB=3:2;CP:CE=5:6;

∴EF:BD=3:(3+2)=3:5;EF:CD=(6-5):5=1:5=3:15;

∴DB:CD=5:15=1:3.

故答案為:1:3.24、略

【分析】【分析】(1)由于x1、x2是方程x2-(k-3)x+k+4=0的兩個(gè)實(shí)根,由于得到其判別式是正數(shù),由此可以確定k的取值范圍,而A、B為x軸上的兩點(diǎn),其橫坐標(biāo)分別為x1、x2(x1<x2),O為坐標(biāo)原點(diǎn),P點(diǎn)在y軸上(P點(diǎn)異于原點(diǎn)).設(shè)∠PAB=α,∠PBA=β,若α、β都是銳角,由此得到點(diǎn)A、B在原點(diǎn)兩旁,所以x1?x2<0;這樣就可以解決問題;

(2)若α=β,則x1+x2=0,由此得到k=3,所以判別式是正數(shù),所以的得到α≠β;然后利用根與系數(shù)的關(guān)系即可得到α、β的大小關(guān)系.【解析】【解答】解:(1)∵x1、x2是方程x2-(k-3)x+k+4=0的兩個(gè)實(shí)根,A、B為x軸上的兩點(diǎn),其橫坐標(biāo)分別為x1、x2(x1<x2).

∴△=k2-10k-7>0得k<5-4或k>5+4;

若α;β都是銳角;

∴點(diǎn)A;B在原點(diǎn)兩旁;

∴x1?x2<0;

∴k<-4;

(2)設(shè)α=β;

則x1+x2=0;

∴k=3;

所以α≠β;

因?yàn)閤1+x2=k-3<-7<0;

所以|x1|>|x2|;

所以O(shè)A>OB;

則PA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論