青島理工大學(xué)《試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
青島理工大學(xué)《試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
青島理工大學(xué)《試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
青島理工大學(xué)《試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
青島理工大學(xué)《試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)青島理工大學(xué)《試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在對(duì)一家制造業(yè)企業(yè)的生產(chǎn)數(shù)據(jù)進(jìn)行分析,例如原材料采購(gòu)、生產(chǎn)流程、產(chǎn)品質(zhì)量等,以?xún)?yōu)化生產(chǎn)過(guò)程和降低成本。以下哪種數(shù)據(jù)分析工具可能最適合處理大規(guī)模的工業(yè)數(shù)據(jù)?()A.ExcelB.PythonC.SPSSD.SQL2、在數(shù)據(jù)分析中,評(píng)估模型的性能是關(guān)鍵步驟。假設(shè)建立了一個(gè)預(yù)測(cè)客戶(hù)流失的模型,需要評(píng)估模型在不同閾值下的準(zhǔn)確性、召回率和F1值等指標(biāo)。以下哪種評(píng)估方法在這種客戶(hù)關(guān)系管理場(chǎng)景中能夠更全面地評(píng)估模型的性能?()A.交叉驗(yàn)證B.留出法C.自助法D.以上方法效果相同3、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理是必不可少的步驟。以下關(guān)于數(shù)據(jù)預(yù)處理的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)轉(zhuǎn)換、數(shù)據(jù)集成等多個(gè)環(huán)節(jié)B.數(shù)據(jù)預(yù)處理的目的是提高數(shù)據(jù)的質(zhì)量,為后續(xù)分析提供更好的數(shù)據(jù)基礎(chǔ)C.數(shù)據(jù)預(yù)處理可以使用自動(dòng)化工具和算法,也可以手動(dòng)進(jìn)行處理D.數(shù)據(jù)預(yù)處理只需要在數(shù)據(jù)分析的開(kāi)始階段進(jìn)行,一旦完成就不需要再進(jìn)行調(diào)整4、假設(shè)要分析一個(gè)醫(yī)療保健系統(tǒng)中的患者病歷數(shù)據(jù),包括診斷結(jié)果、治療方案、康復(fù)情況等,以發(fā)現(xiàn)疾病的趨勢(shì)和治療效果的影響因素??紤]到醫(yī)療數(shù)據(jù)的敏感性和隱私性,以下哪個(gè)方面需要特別注意?()A.數(shù)據(jù)加密和安全保護(hù)B.快速得出分析結(jié)果C.忽略數(shù)據(jù)的隱私問(wèn)題D.公開(kāi)所有數(shù)據(jù)以獲取更多幫助5、在時(shí)間序列數(shù)據(jù)分析中,預(yù)測(cè)未來(lái)值是一個(gè)重要的應(yīng)用。假設(shè)我們有一個(gè)股票價(jià)格的時(shí)間序列數(shù)據(jù),想要預(yù)測(cè)未來(lái)一段時(shí)間的價(jià)格走勢(shì),以下哪種方法可能較為有效?()A.移動(dòng)平均法B.指數(shù)平滑法C.ARIMA模型D.以上都有可能,取決于數(shù)據(jù)特點(diǎn)6、對(duì)于一個(gè)具有大量數(shù)據(jù)的數(shù)據(jù)庫(kù),若要提高查詢(xún)效率,以下哪種技術(shù)可能會(huì)被使用?()A.緩存B.分區(qū)C.索引優(yōu)化D.以上都是7、在數(shù)據(jù)分析中,大數(shù)據(jù)技術(shù)為處理海量數(shù)據(jù)提供了支持。假設(shè)要處理一個(gè)PB級(jí)別的數(shù)據(jù)集,以下關(guān)于大數(shù)據(jù)技術(shù)的描述,哪一項(xiàng)是不正確的?()A.Hadoop生態(tài)系統(tǒng)中的HDFS用于分布式存儲(chǔ)數(shù)據(jù),能夠擴(kuò)展到大規(guī)模的集群B.MapReduce編程模型可以實(shí)現(xiàn)并行處理,提高數(shù)據(jù)處理的效率C.大數(shù)據(jù)技術(shù)只適用于處理結(jié)構(gòu)化數(shù)據(jù),對(duì)于非結(jié)構(gòu)化和半結(jié)構(gòu)化數(shù)據(jù)無(wú)能為力D.實(shí)時(shí)處理大數(shù)據(jù)可以使用SparkStreaming或Flink等框架8、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個(gè)假設(shè)。假設(shè)要檢驗(yàn)一種新的教學(xué)方法是否能顯著提高學(xué)生的成績(jī),以下關(guān)于假設(shè)檢驗(yàn)的描述,正確的是:()A.不設(shè)定原假設(shè)和備擇假設(shè),直接進(jìn)行檢驗(yàn)B.忽略檢驗(yàn)的顯著性水平,隨意得出結(jié)論C.正確設(shè)定原假設(shè)和備擇假設(shè),選擇合適的檢驗(yàn)統(tǒng)計(jì)量,根據(jù)顯著性水平和樣本數(shù)據(jù)進(jìn)行推斷,并解釋檢驗(yàn)結(jié)果的實(shí)際意義D.只關(guān)注檢驗(yàn)結(jié)果是否拒絕原假設(shè),不考慮效應(yīng)大小和實(shí)際應(yīng)用價(jià)值9、在對(duì)一個(gè)社交網(wǎng)絡(luò)的用戶(hù)關(guān)系數(shù)據(jù)進(jìn)行分析,例如好友關(guān)系、群組活動(dòng)等,以發(fā)現(xiàn)社區(qū)結(jié)構(gòu)和關(guān)鍵節(jié)點(diǎn)。以下哪種算法可能在社區(qū)發(fā)現(xiàn)和關(guān)鍵人物識(shí)別中表現(xiàn)出色?()A.PageRank算法B.K-Means算法C.Apriori算法D.以上都不是10、在進(jìn)行數(shù)據(jù)分析時(shí),需要處理數(shù)據(jù)的不平衡問(wèn)題。假設(shè)要分析信用卡欺詐檢測(cè)數(shù)據(jù),其中欺詐交易的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于正常交易。以下哪種方法在處理這種數(shù)據(jù)不平衡問(wèn)題時(shí)更能提高模型對(duì)少數(shù)類(lèi)(欺詐交易)的識(shí)別能力?()A.過(guò)采樣B.欠采樣C.合成少數(shù)類(lèi)過(guò)采樣技術(shù)(SMOTE)D.以上方法結(jié)合使用11、在數(shù)據(jù)分析的探索性數(shù)據(jù)分析(EDA)中,以下不屬于常用方法的是()A.繪制箱線圖B.進(jìn)行假設(shè)檢驗(yàn)C.計(jì)算數(shù)據(jù)的描述性統(tǒng)計(jì)量D.觀察數(shù)據(jù)的分布12、對(duì)于一個(gè)包含多個(gè)變量的數(shù)據(jù)集,若要找出變量之間的潛在結(jié)構(gòu)關(guān)系,以下哪種方法較為有效?()A.主成分分析B.判別分析C.對(duì)應(yīng)分析D.典型相關(guān)分析13、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的算法和模型需要考慮數(shù)據(jù)的特點(diǎn)和分析目的。假設(shè)我們有一個(gè)不平衡的數(shù)據(jù)集,其中一個(gè)類(lèi)別占比極少,以下哪種方法可以處理這種不平衡問(wèn)題?()A.過(guò)采樣B.欠采樣C.調(diào)整分類(lèi)閾值D.以上都是14、在數(shù)據(jù)分析項(xiàng)目中,與利益相關(guān)者的溝通和理解需求至關(guān)重要。假設(shè)你正在為一家企業(yè)進(jìn)行數(shù)據(jù)分析,以下關(guān)于需求溝通的方法,哪一項(xiàng)是最有效的?()A.使用大量的技術(shù)術(shù)語(yǔ)和復(fù)雜的圖表來(lái)解釋分析過(guò)程B.以通俗易懂的語(yǔ)言,結(jié)合實(shí)際案例說(shuō)明分析的目標(biāo)和結(jié)果C.只與技術(shù)人員溝通,忽略非技術(shù)背景的利益相關(guān)者D.不與利益相關(guān)者溝通,自行決定分析的方向和重點(diǎn)15、數(shù)據(jù)分析中,數(shù)據(jù)分析方法的選擇應(yīng)根據(jù)具體問(wèn)題來(lái)確定。以下關(guān)于數(shù)據(jù)分析方法選擇的說(shuō)法中,錯(cuò)誤的是?()A.不同的數(shù)據(jù)分析方法適用于不同類(lèi)型的問(wèn)題和數(shù)據(jù),需要根據(jù)實(shí)際情況進(jìn)行選擇B.數(shù)據(jù)分析方法的選擇可以參考前人的研究經(jīng)驗(yàn)和案例,但不能完全依賴(lài)C.選擇數(shù)據(jù)分析方法時(shí),應(yīng)考慮方法的準(zhǔn)確性、效率和可解釋性等因素D.數(shù)據(jù)分析方法一旦確定就不能再進(jìn)行調(diào)整和改變,否則會(huì)影響分析結(jié)果的可靠性16、數(shù)據(jù)分析中的數(shù)據(jù)血緣追蹤用于了解數(shù)據(jù)的來(lái)源和流向。假設(shè)要追蹤一個(gè)分析報(bào)告中數(shù)據(jù)的演變過(guò)程,以下關(guān)于數(shù)據(jù)血緣追蹤的描述,正確的是:()A.不記錄數(shù)據(jù)的處理步驟和轉(zhuǎn)換過(guò)程,無(wú)法進(jìn)行血緣追蹤B.簡(jiǎn)單地記錄部分?jǐn)?shù)據(jù)的來(lái)源,不考慮整個(gè)流程C.建立完善的數(shù)據(jù)血緣管理系統(tǒng),記錄數(shù)據(jù)的采集、清洗、轉(zhuǎn)換、聚合等全過(guò)程,以便清晰地了解數(shù)據(jù)的來(lái)龍去脈和影響范圍D.認(rèn)為數(shù)據(jù)血緣追蹤是額外的工作,對(duì)數(shù)據(jù)分析沒(méi)有幫助17、對(duì)于數(shù)據(jù)分析中的分類(lèi)問(wèn)題,假設(shè)要預(yù)測(cè)一個(gè)郵件是否為垃圾郵件,基于郵件的內(nèi)容、發(fā)件人、主題等特征。以下哪種分類(lèi)算法在處理這種文本分類(lèi)任務(wù)時(shí)可能效果較好?()A.決策樹(shù),通過(guò)一系列規(guī)則進(jìn)行分類(lèi)B.支持向量機(jī),尋找最優(yōu)分類(lèi)超平面C.樸素貝葉斯,基于概率進(jìn)行分類(lèi)D.不進(jìn)行分類(lèi),將所有郵件視為正常郵件18、在建立回歸模型時(shí),如果數(shù)據(jù)存在多重共線性,以下哪種方法可以緩解這個(gè)問(wèn)題?()A.對(duì)自變量進(jìn)行中心化和標(biāo)準(zhǔn)化B.增加樣本量C.剔除一些相關(guān)的自變量D.以上都是19、在數(shù)據(jù)分析中,如果想要比較兩個(gè)獨(dú)立樣本的均值是否有顯著差異,應(yīng)該使用哪種檢驗(yàn)方法?()A.t檢驗(yàn)B.方差分析C.卡方檢驗(yàn)D.秩和檢驗(yàn)20、在數(shù)據(jù)庫(kù)中,索引可以提高數(shù)據(jù)的查詢(xún)效率。以下哪種情況下不適合創(chuàng)建索引?()A.表中數(shù)據(jù)量較小B.經(jīng)常作為查詢(xún)條件的字段C.唯一性較差的字段D.頻繁更新的字段21、對(duì)于一個(gè)時(shí)間序列數(shù)據(jù),若要預(yù)測(cè)未來(lái)一段時(shí)間的數(shù)值,以下哪種預(yù)測(cè)方法通常不依賴(lài)歷史數(shù)據(jù)的季節(jié)性特征?()A.移動(dòng)平均法B.指數(shù)平滑法C.線性回歸法D.季節(jié)性指數(shù)法22、在進(jìn)行數(shù)據(jù)分析以評(píng)估一個(gè)新的市場(chǎng)營(yíng)銷(xiāo)活動(dòng)的效果時(shí),比如分析活動(dòng)前后的客戶(hù)流量、購(gòu)買(mǎi)轉(zhuǎn)化率和客戶(hù)滿(mǎn)意度等指標(biāo)的變化。由于活動(dòng)期間可能受到其他外部因素的干擾,為了準(zhǔn)確評(píng)估活動(dòng)的貢獻(xiàn),以下哪種方法可能是合適的?()A.建立對(duì)照組進(jìn)行對(duì)比B.只關(guān)注活動(dòng)期間的數(shù)據(jù)C.忽略外部因素的影響D.憑經(jīng)驗(yàn)主觀判斷23、數(shù)據(jù)分析中的文本挖掘用于從大量文本數(shù)據(jù)中提取有價(jià)值的信息。假設(shè)要從客戶(hù)的評(píng)價(jià)文本中挖掘他們的滿(mǎn)意度,以下關(guān)于文本挖掘的描述,哪一項(xiàng)是不正確的?()A.可以使用詞袋模型將文本轉(zhuǎn)換為數(shù)值向量,以便進(jìn)行后續(xù)的分析B.情感分析能夠判斷文本的情感傾向,如積極、消極或中性C.主題模型可以發(fā)現(xiàn)文本中的潛在主題,但無(wú)法確定每個(gè)文本所屬的具體主題D.文本挖掘不需要對(duì)文本進(jìn)行預(yù)處理,如分詞和去除停用詞24、在數(shù)據(jù)庫(kù)中,若要執(zhí)行事務(wù)處理以確保數(shù)據(jù)的一致性,以下哪個(gè)特性是關(guān)鍵的?()A.原子性B.一致性C.隔離性D.持久性25、在進(jìn)行時(shí)間序列分析時(shí),如果數(shù)據(jù)存在明顯的長(zhǎng)期趨勢(shì)和季節(jié)性變動(dòng),以下哪種模型較為適用?()A.ARIMA模型B.SARIMA模型C.Holt-Winters模型D.以上都不是26、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的自動(dòng)化是提高效率的重要手段。以下關(guān)于數(shù)據(jù)預(yù)處理自動(dòng)化的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)預(yù)處理自動(dòng)化可以使用腳本和工具來(lái)實(shí)現(xiàn),減少手動(dòng)處理的工作量B.數(shù)據(jù)預(yù)處理自動(dòng)化可以提高數(shù)據(jù)的一致性和準(zhǔn)確性,減少人為錯(cuò)誤C.數(shù)據(jù)預(yù)處理自動(dòng)化需要根據(jù)具體的數(shù)據(jù)和問(wèn)題進(jìn)行定制化開(kāi)發(fā),不能通用D.數(shù)據(jù)預(yù)處理自動(dòng)化可以完全替代手動(dòng)處理,不需要人工干預(yù)27、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的分布情況,以下哪種圖表最為合適?()A.折線圖B.柱狀圖C.箱線圖D.餅圖28、在進(jìn)行數(shù)據(jù)分類(lèi)任務(wù)時(shí),需要評(píng)估模型的性能。假設(shè)我們訓(xùn)練了一個(gè)分類(lèi)模型,以下哪個(gè)評(píng)估指標(biāo)能夠綜合考慮模型的查準(zhǔn)率和查全率?()A.F1值B.準(zhǔn)確率C.召回率D.AUC值29、在進(jìn)行時(shí)間序列預(yù)測(cè)時(shí),如果數(shù)據(jù)存在明顯的周期性,但周期長(zhǎng)度不固定,以下哪種方法可能適用?()A.Prophet模型B.LSTM神經(jīng)網(wǎng)絡(luò)C.動(dòng)態(tài)時(shí)間規(guī)整D.以上都不是30、數(shù)據(jù)分析中的數(shù)據(jù)可視化有助于直觀理解數(shù)據(jù)。假設(shè)要展示不同地區(qū)的銷(xiāo)售額分布情況,以下關(guān)于數(shù)據(jù)可視化選擇的描述,正確的是:()A.使用餅圖,因?yàn)樗芮逦故靖鞯貐^(qū)銷(xiāo)售額占比B.采用折線圖,以反映銷(xiāo)售額隨地區(qū)的變化趨勢(shì)C.運(yùn)用柱狀圖,直觀比較不同地區(qū)銷(xiāo)售額的差異D.選擇箱線圖,全面展示銷(xiāo)售額的分布特征,包括四分位數(shù)和異常值二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在醫(yī)療臨床研究中,如何通過(guò)數(shù)據(jù)分析來(lái)驗(yàn)證新藥物的療效、評(píng)估治療方案的有效性和安全性?請(qǐng)?jiān)敿?xì)闡述數(shù)據(jù)分析的方法和流程,以及如何處理臨床試驗(yàn)數(shù)據(jù)中的復(fù)雜性和不確定性。2、(本題5分)在電商平臺(tái)的品牌營(yíng)銷(xiāo)中,數(shù)據(jù)分析能夠精準(zhǔn)定位目標(biāo)客戶(hù)和評(píng)估品牌影響力。以某電商平臺(tái)上的品牌商家為例,闡述如何通過(guò)數(shù)據(jù)分析來(lái)制定品牌推廣策略、選擇合作渠道、評(píng)估品牌價(jià)值,以及如何利用社交媒體數(shù)據(jù)提升品牌知名度。3、(本題5分)零售行業(yè)面臨著激烈的競(jìng)爭(zhēng)和消費(fèi)者需求的快速變化。選取一家零售企業(yè),論述如何運(yùn)用數(shù)據(jù)分析來(lái)進(jìn)行商品品類(lèi)管理、庫(kù)存優(yōu)化、促銷(xiāo)活動(dòng)效果評(píng)估,以及如何基于數(shù)據(jù)分析洞察消費(fèi)者行為和市場(chǎng)趨勢(shì)。4、(本題5分)社交媒體營(yíng)銷(xiāo)活動(dòng)中,如何通過(guò)數(shù)據(jù)分析來(lái)評(píng)估活動(dòng)效果、優(yōu)化投放策略和提升品牌影響力?請(qǐng)?jiān)敿?xì)分析活動(dòng)數(shù)據(jù)的關(guān)鍵指標(biāo)、分析方法和基于數(shù)據(jù)的決策調(diào)整。5、(本題5分)對(duì)于電商平臺(tái)的品牌管理,論述如何運(yùn)用數(shù)據(jù)分析評(píng)估品牌形象和品牌價(jià)值,制定品牌推廣和維護(hù)策略。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)在進(jìn)行時(shí)間序列數(shù)據(jù)分析時(shí),如何進(jìn)行季節(jié)性調(diào)整?解釋季節(jié)性調(diào)整的目的和常用方法,并舉例說(shuō)明。2、(本題5分)闡述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的異常傳播分析,包括異常的擴(kuò)散路徑、影響范圍等方面的分析方法和應(yīng)用。3、(本題5分)闡述數(shù)據(jù)挖掘中的圖像挖掘的主要任務(wù)和方法,如圖像分類(lèi)、目標(biāo)檢測(cè)等,并舉例說(shuō)明在醫(yī)療影像數(shù)據(jù)分析中的應(yīng)用。4、(本

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論