閩西職業(yè)技術學院《標志設計》2023-2024學年第一學期期末試卷_第1頁
閩西職業(yè)技術學院《標志設計》2023-2024學年第一學期期末試卷_第2頁
閩西職業(yè)技術學院《標志設計》2023-2024學年第一學期期末試卷_第3頁
閩西職業(yè)技術學院《標志設計》2023-2024學年第一學期期末試卷_第4頁
閩西職業(yè)技術學院《標志設計》2023-2024學年第一學期期末試卷_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共3頁閩西職業(yè)技術學院《標志設計》

2023-2024學年第一學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺在無人駕駛中的應用需要應對各種復雜的環(huán)境和情況。假設無人駕駛汽車要在惡劣天氣下行駛,以下關于計算機視覺在無人駕駛中的挑戰(zhàn)的描述,哪一項是不正確的?()A.惡劣天氣會影響圖像的質量和清晰度,增加目標檢測和識別的難度B.計算機視覺系統(tǒng)需要與其他傳感器(如雷達和超聲波傳感器)融合,以提高在惡劣天氣下的感知能力C.深度學習模型在惡劣天氣條件下的性能會顯著下降,無法正常工作D.針對惡劣天氣,可以通過數據增強和模型優(yōu)化等方法提高計算機視覺系統(tǒng)的魯棒性2、計算機視覺在無人駕駛飛行器(UAV)中的應用可以實現自主導航和環(huán)境感知。假設一個UAV需要在復雜的環(huán)境中飛行并避開障礙物。以下關于計算機視覺在UAV中的描述,哪一項是錯誤的?()A.可以通過視覺傳感器獲取周圍環(huán)境的信息,包括地形、建筑物和其他障礙物B.能夠實時分析圖像,計算與障礙物的距離和相對速度,為飛行決策提供依據C.計算機視覺在UAV中的應用完全不需要與其他傳感器(如慣性測量單元)的數據融合D.可以利用深度學習算法進行端到端的飛行控制,實現自主飛行3、在計算機視覺的行人重識別任務中,假設要在多個攝像頭拍攝的畫面中找到同一個行人。以下關于特征融合的方法,哪一項是不太合理的?()A.將行人的外觀特征和步態(tài)特征進行融合B.簡單地將不同特征進行拼接,不考慮權重分配C.根據特征的重要性為其分配不同的權重進行融合D.利用深度學習模型自動學習特征的融合方式4、在計算機視覺的圖像融合任務中,將多幅圖像合成為一幅更完整、更有信息的圖像。假設要將一張白天拍攝的風景圖像和一張夜晚拍攝的同一地點的圖像進行融合,以下關于圖像融合方法的描述,哪一項是不正確的?()A.可以基于像素級的融合策略,將兩幅圖像的像素值進行加權或組合B.特征級融合方法先提取圖像的特征,然后進行融合,能夠更好地保留圖像的語義信息C.圖像融合的效果只取決于融合算法的選擇,與輸入圖像的質量和內容無關D.多模態(tài)圖像融合需要考慮不同圖像的特點和互補性,以獲得更理想的融合結果5、圖像壓縮是為了減少圖像的數據量,同時保持可接受的視覺質量。假設我們需要在網絡上傳輸大量的圖像,以下哪種圖像壓縮標準能夠在保證較高壓縮比的同時,提供較好的圖像質量?()A.JPEGB.PNGC.GIFD.BMP6、在計算機視覺的行人檢測任務中,假設要在一個擁擠的街道場景中準確檢測出行人,場景中存在光照變化、人群遮擋和復雜背景。以下哪種特征表示方法在這種情況下可能更具魯棒性?()A.基于形狀的特征,如行人的輪廓B.基于顏色的特征,如行人衣服的顏色C.基于深度學習的特征,通過卷積神經網絡自動學習D.不提取任何特征,直接對原始圖像進行檢測7、視頻分析是計算機視覺的一個重要領域。假設我們要分析一段監(jiān)控視頻,以檢測異常行為,如打架、盜竊等。對于這種實時性要求較高的視頻分析任務,以下哪種方法更適合用于快速處理和檢測?()A.對每一幀圖像單獨進行分析B.基于光流的方法跟蹤對象運動C.利用深度學習模型直接對視頻進行分析D.采用傳統(tǒng)的圖像處理方法,如背景減除8、在計算機視覺的三維重建任務中,例如從多視角圖像恢復物體的三維形狀,需要解決相機位姿估計、特征匹配等問題。以下哪種方法在相機位姿估計方面可能具有更高的精度?()A.基于直接線性變換的方法B.基于BundleAdjustment的方法C.基于特征點的方法D.基于深度學習的方法9、在計算機視覺的目標檢測中,對于小目標的檢測往往具有較大的挑戰(zhàn)性。為了提高小目標檢測的準確率,以下哪種策略可能是有效的?()A.多尺度特征融合B.增加訓練數據中的小目標樣本C.使用更高分辨率的輸入圖像D.以上都是10、在一個基于計算機視覺的農業(yè)監(jiān)測系統(tǒng)中,需要對農作物的生長狀況進行評估,例如判斷葉片的顏色、形狀和病蟲害情況。以下哪種圖像分析方法可能對農作物監(jiān)測較為有效?()A.顏色空間轉換B.形態(tài)學分析C.紋理分析D.以上都是11、計算機視覺在醫(yī)學圖像分析中有著重要作用。假設要通過眼底圖像檢測糖尿病性視網膜病變,以下關于模型訓練中數據標注的難度,哪一項是最為顯著的?()A.病變區(qū)域的邊界模糊,難以精確標注B.眼底圖像的質量參差不齊,影響標注準確性C.標注人員的醫(yī)學知識不足,導致標注錯誤D.數據量過大,標注工作耗時費力12、在計算機視覺中,圖像分割旨在將圖像劃分為不同的區(qū)域,每個區(qū)域具有相似的特征。以下關于圖像分割的敘述,不正確的是()A.圖像分割可以基于像素的顏色、紋理等特征進行B.深度學習方法在圖像分割中取得了顯著的成果,如全卷積網絡(FCN)C.圖像分割在醫(yī)學影像分析、自動駕駛場景理解等方面具有重要作用D.圖像分割的結果總是完美的,能夠準確地將圖像中的所有物體都分割出來13、計算機視覺在工業(yè)檢測中的應用越來越廣泛。假設要檢測電子電路板上的微小缺陷,以下哪種圖像采集設備可能提供更高的分辨率和精度?()A.普通數碼相機B.工業(yè)線陣相機C.手機攝像頭D.監(jiān)控攝像頭14、在計算機視覺的目標跟蹤任務中,假設要在一段視頻中持續(xù)跟蹤一個移動的物體,例如跟蹤一只飛行的鳥。物體可能會被其他物體遮擋,并且外觀可能會發(fā)生變化。以下哪種目標跟蹤方法在這種復雜情況下更有可能成功?()A.基于卡爾曼濾波的跟蹤方法,預測物體的位置和速度B.基于深度學習的Siamese網絡跟蹤方法C.只在視頻的起始幀確定目標位置,后續(xù)幀不再跟蹤D.隨機選擇視頻中的區(qū)域作為跟蹤目標15、計算機視覺中的視頻理解不僅包括對單個幀的分析,還需要考慮幀之間的關系。假設我們要理解一個電影片段的情節(jié)和情感,以下哪種方法能夠有效地捕捉視頻中的時空動態(tài)信息和語義信息?()A.基于幀級特征和分類器的方法B.基于深度學習的視頻理解模型,結合注意力機制C.基于光流和運動軌跡的方法D.基于音頻和視頻融合的方法二、簡答題(本大題共3個小題,共15分)1、(本題5分)解釋計算機視覺在虹膜識別中的關鍵技術。2、(本題5分)簡述圖像的色彩調整軟件。3、(本題5分)解釋計算機視覺在醫(yī)療影像診斷中的作用。三、應用題(本大題共5個小題,共25分)1、(本題5分)開發(fā)一個能夠識別不同國家國旗的應用。2、(本題5分)開發(fā)一個能夠識別不同種類昆蟲幼蟲的計算機視覺系統(tǒng)。3、(本題5分)開發(fā)一個可以識別不同種類企鵝的計算機視覺應用。4、(本題5分)利用目標檢測算法,在海洋監(jiān)測圖像中檢測漏油區(qū)域。5、(本題5分)通過圖像分割技術,將衛(wèi)星圖像中的冰雪覆蓋區(qū)域和非覆蓋區(qū)域進行劃分。四、分析題(本大題共3個小題,共30分)1、(本題10分)研究某電子產品

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論