中央財(cái)經(jīng)大學(xué)《數(shù)據(jù)分析與商務(wù)智能》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
中央財(cái)經(jīng)大學(xué)《數(shù)據(jù)分析與商務(wù)智能》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
中央財(cái)經(jīng)大學(xué)《數(shù)據(jù)分析與商務(wù)智能》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
中央財(cái)經(jīng)大學(xué)《數(shù)據(jù)分析與商務(wù)智能》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)中央財(cái)經(jīng)大學(xué)《數(shù)據(jù)分析與商務(wù)智能》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的應(yīng)用領(lǐng)域非常廣泛。以下關(guān)于數(shù)據(jù)挖掘應(yīng)用領(lǐng)域的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘可以應(yīng)用于市場(chǎng)營(yíng)銷、金融、醫(yī)療、電商等多個(gè)領(lǐng)域B.數(shù)據(jù)挖掘可以幫助企業(yè)進(jìn)行客戶細(xì)分、風(fēng)險(xiǎn)評(píng)估、產(chǎn)品推薦等工作C.數(shù)據(jù)挖掘的應(yīng)用需要結(jié)合具體的業(yè)務(wù)問題和數(shù)據(jù)特點(diǎn),不能盲目使用D.數(shù)據(jù)挖掘只適用于大規(guī)模企業(yè),對(duì)于中小企業(yè)來(lái)說(shuō)沒有實(shí)際應(yīng)用價(jià)值2、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的分布和趨勢(shì),以下哪種組合的圖表較為合適?()A.直方圖和折線圖B.箱線圖和散點(diǎn)圖C.餅圖和柱狀圖D.雷達(dá)圖和樹形圖3、在數(shù)據(jù)分析中,探索性數(shù)據(jù)分析(EDA)用于初步了解數(shù)據(jù)的特征和規(guī)律。假設(shè)要對(duì)一個(gè)新的數(shù)據(jù)集進(jìn)行EDA,以下關(guān)于EDA的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)繪制直方圖、箱線圖等圖形來(lái)觀察數(shù)據(jù)的分布情況B.計(jì)算數(shù)據(jù)的基本統(tǒng)計(jì)量,如均值、中位數(shù)、眾數(shù)等,有助于了解數(shù)據(jù)的集中趨勢(shì)和離散程度C.EDA只是一個(gè)初步的過(guò)程,對(duì)后續(xù)的深入分析和建模作用不大D.發(fā)現(xiàn)數(shù)據(jù)中的異常值和缺失值,并思考它們可能的原因和影響4、在數(shù)據(jù)分析中,若要檢驗(yàn)數(shù)據(jù)是否來(lái)自于某個(gè)特定的分布,應(yīng)使用哪種檢驗(yàn)方法?()A.卡方擬合優(yōu)度檢驗(yàn)B.Kolmogorov-Smirnov檢驗(yàn)C.Shapiro-Wilk檢驗(yàn)D.以上都是5、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣是一種常用的方法。以下關(guān)于數(shù)據(jù)抽樣的目的,錯(cuò)誤的是?()A.減少數(shù)據(jù)的數(shù)量,降低數(shù)據(jù)分析的成本和時(shí)間B.保證樣本具有代表性,能夠反映總體的特征和趨勢(shì)C.避免數(shù)據(jù)的過(guò)擬合,提高數(shù)據(jù)分析的結(jié)果的準(zhǔn)確性和可靠性D.增加數(shù)據(jù)的多樣性,提高數(shù)據(jù)分析的結(jié)果的創(chuàng)新性和實(shí)用性6、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理是必不可少的步驟。以下關(guān)于數(shù)據(jù)預(yù)處理的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)轉(zhuǎn)換、數(shù)據(jù)集成等多個(gè)環(huán)節(jié)B.數(shù)據(jù)預(yù)處理的目的是提高數(shù)據(jù)的質(zhì)量,為后續(xù)分析提供更好的數(shù)據(jù)基礎(chǔ)C.數(shù)據(jù)預(yù)處理可以使用自動(dòng)化工具和算法,也可以手動(dòng)進(jìn)行處理D.數(shù)據(jù)預(yù)處理只需要在數(shù)據(jù)分析的開始階段進(jìn)行,一旦完成就不需要再進(jìn)行調(diào)整7、在進(jìn)行數(shù)據(jù)分析時(shí),需要選擇合適的評(píng)估指標(biāo)來(lái)衡量模型的性能。假設(shè)要評(píng)估一個(gè)分類模型的效果,以下關(guān)于評(píng)估指標(biāo)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,但在類別不平衡的情況下可能不準(zhǔn)確B.召回率衡量了正類樣本被正確預(yù)測(cè)的比例,適用于關(guān)注正類樣本的情況C.F1值綜合了準(zhǔn)確率和召回率,是一個(gè)較為平衡的評(píng)估指標(biāo),但計(jì)算較為復(fù)雜D.評(píng)估指標(biāo)的選擇只取決于數(shù)據(jù)的特點(diǎn),與模型的類型和應(yīng)用場(chǎng)景無(wú)關(guān)8、在數(shù)據(jù)分析中,建立預(yù)測(cè)模型是常見的任務(wù)之一。假設(shè)我們要預(yù)測(cè)下個(gè)月的產(chǎn)品銷售量。以下關(guān)于預(yù)測(cè)模型的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.線性回歸模型假設(shè)自變量和因變量之間存在線性關(guān)系,適用于簡(jiǎn)單的預(yù)測(cè)問題B.決策樹模型易于理解和解釋,但可能會(huì)出現(xiàn)過(guò)擬合的問題C.隨機(jī)森林是由多個(gè)決策樹組成的集成模型,性能通常優(yōu)于單個(gè)決策樹D.預(yù)測(cè)模型一旦建立,就不需要根據(jù)新的數(shù)據(jù)進(jìn)行更新和調(diào)整9、數(shù)據(jù)分析中的隨機(jī)森林是一種集成學(xué)習(xí)算法。假設(shè)我們使用隨機(jī)森林進(jìn)行分類任務(wù),以下哪個(gè)因素會(huì)影響隨機(jī)森林的性能?()A.決策樹的數(shù)量B.特征的隨機(jī)選擇C.樣本的隨機(jī)抽樣D.以上都是10、在處理時(shí)間序列數(shù)據(jù)時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行季節(jié)性分解,以下哪種方法在Python中常用?()A.statsmodels庫(kù)中的seasonal_decompose函數(shù)B.scikit-learn庫(kù)中的decomposition模塊C.pandas庫(kù)中的resample函數(shù)D.matplotlib庫(kù)中的plot函數(shù)11、在數(shù)據(jù)分析中,對(duì)于高維度的數(shù)據(jù),例如基因表達(dá)數(shù)據(jù)、圖像數(shù)據(jù)等,需要進(jìn)行降維處理以簡(jiǎn)化分析。以下哪種降維方法可能是常用的?()A.主成分分析(PCA)B.線性判別分析(LDA)C.局部線性嵌入(LLE)D.以上都是12、在數(shù)據(jù)挖掘的關(guān)聯(lián)規(guī)則挖掘中,以下哪個(gè)指標(biāo)用于衡量規(guī)則的有效性和實(shí)用性?()A.支持度B.置信度C.提升度D.以上都是13、在數(shù)據(jù)分析中,數(shù)據(jù)可視化不僅可以用于展示結(jié)果,還可以用于探索數(shù)據(jù)。假設(shè)要通過(guò)可視化探索兩個(gè)變量之間的關(guān)系,以下關(guān)于數(shù)據(jù)可視化探索的描述,哪一項(xiàng)是不正確的?()A.散點(diǎn)圖可以直觀地顯示兩個(gè)變量之間的線性或非線性關(guān)系B.熱力圖可以用于展示兩個(gè)變量在不同取值下的頻率或密度C.數(shù)據(jù)可視化探索只是輔助手段,不能替代統(tǒng)計(jì)分析和建模D.可以通過(guò)不斷調(diào)整可視化的參數(shù)和形式,發(fā)現(xiàn)數(shù)據(jù)中隱藏的模式和趨勢(shì)14、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持對(duì)總體的某種假設(shè)。假設(shè)我們想要檢驗(yàn)一種新的營(yíng)銷策略是否顯著提高了產(chǎn)品的銷售額,設(shè)定顯著性水平為0.05。如果計(jì)算得到的p值小于0.05,我們可以得出什么結(jié)論?()A.新的營(yíng)銷策略顯著提高了銷售額B.新的營(yíng)銷策略沒有顯著提高銷售額C.無(wú)法確定新策略對(duì)銷售額的影響D.以上結(jié)論都不正確15、數(shù)據(jù)分析中的異常檢測(cè)用于識(shí)別數(shù)據(jù)中的異常值或異常模式。假設(shè)你在分析一家公司的財(cái)務(wù)數(shù)據(jù),以檢測(cè)可能的欺詐行為。以下關(guān)于異常檢測(cè)方法的選擇,哪一項(xiàng)是最具挑戰(zhàn)性的?()A.基于統(tǒng)計(jì)的方法,如設(shè)定閾值來(lái)判斷異常B.利用機(jī)器學(xué)習(xí)算法,如孤立森林,自動(dòng)識(shí)別異常C.結(jié)合領(lǐng)域知識(shí)和人工判斷來(lái)確定異常D.完全依賴數(shù)據(jù)的直觀觀察來(lái)發(fā)現(xiàn)異常16、在進(jìn)行數(shù)據(jù)挖掘時(shí),分類算法中的決策樹算法具有易于理解和解釋的優(yōu)點(diǎn)。以下哪個(gè)因素不會(huì)影響決策樹的構(gòu)建?()A.特征選擇B.樣本數(shù)量C.數(shù)據(jù)的缺失值D.計(jì)算資源的大小17、在數(shù)據(jù)挖掘中,Apriori算法常用于挖掘頻繁項(xiàng)集。以下關(guān)于Apriori算法的描述,正確的是?()A.它是一種無(wú)監(jiān)督學(xué)習(xí)算法B.它只能處理數(shù)值型數(shù)據(jù)C.它的計(jì)算復(fù)雜度較低D.它需要事先指定頻繁項(xiàng)集的支持度閾值18、回歸分析是數(shù)據(jù)分析中的常用方法。假設(shè)要研究廣告投入與銷售額之間的關(guān)系,以下關(guān)于回歸分析的描述,正確的是:()A.簡(jiǎn)單線性回歸足以捕捉廣告投入和銷售額之間的復(fù)雜非線性關(guān)系B.多元線性回歸中,自變量越多,模型的解釋能力就越強(qiáng)C.在建立回歸模型前,不需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理D.回歸模型的擬合優(yōu)度(R2)越高,說(shuō)明模型對(duì)數(shù)據(jù)的擬合效果越好19、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問題。以下關(guān)于數(shù)據(jù)清洗的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)刪除包含大量缺失值的記錄來(lái)簡(jiǎn)化數(shù)據(jù),但可能會(huì)丟失有價(jià)值的信息B.對(duì)于錯(cuò)誤的數(shù)據(jù),可以根據(jù)數(shù)據(jù)的分布和邏輯關(guān)系進(jìn)行修正或刪除C.重復(fù)記錄的處理只需保留其中一條,對(duì)分析結(jié)果沒有實(shí)質(zhì)性影響D.數(shù)據(jù)清洗的目的是提高數(shù)據(jù)質(zhì)量,為后續(xù)的分析提供可靠的數(shù)據(jù)基礎(chǔ)20、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個(gè)假設(shè)。假設(shè)你要檢驗(yàn)一種新的營(yíng)銷策略是否有效,以下關(guān)于假設(shè)檢驗(yàn)方法的選擇,哪一項(xiàng)是最恰當(dāng)?shù)??()A.選擇t檢驗(yàn),比較兩組數(shù)據(jù)的均值是否有顯著差異B.運(yùn)用方差分析,檢驗(yàn)多組數(shù)據(jù)之間是否存在差異C.使用卡方檢驗(yàn),判斷分類變量之間的關(guān)聯(lián)D.不進(jìn)行假設(shè)檢驗(yàn),憑直覺判斷策略是否有效二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)說(shuō)明在數(shù)據(jù)分析中如何進(jìn)行數(shù)據(jù)的脫敏處理以保護(hù)敏感信息?請(qǐng)闡述常見的脫敏方法和技術(shù),并舉例說(shuō)明在實(shí)際項(xiàng)目中的應(yīng)用。2、(本題5分)闡述數(shù)據(jù)分析中的生存分析的概念和應(yīng)用場(chǎng)景,如在醫(yī)學(xué)研究、客戶流失預(yù)測(cè)中的應(yīng)用,并解釋常用的生存分析方法。3、(本題5分)描述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的質(zhì)量監(jiān)控和預(yù)警,包括設(shè)定指標(biāo)、監(jiān)控頻率和異常通知機(jī)制。4、(本題5分)簡(jiǎn)述數(shù)據(jù)挖掘的概念和主要流程,解釋數(shù)據(jù)挖掘與傳統(tǒng)數(shù)據(jù)分析方法的區(qū)別,并說(shuō)明數(shù)據(jù)挖掘在商業(yè)領(lǐng)域中的應(yīng)用場(chǎng)景。5、(本題5分)描述數(shù)據(jù)質(zhì)量評(píng)估的指標(biāo)體系,包括準(zhǔn)確性、完整性、一致性等,并說(shuō)明如何通過(guò)這些指標(biāo)來(lái)評(píng)估數(shù)據(jù)質(zhì)量和采取改進(jìn)措施。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某在線健身平臺(tái)掌握了用戶的運(yùn)動(dòng)項(xiàng)目選擇、訓(xùn)練計(jì)劃完成情況、飲食記錄等。思考如何通過(guò)這些數(shù)據(jù)為用戶提供更科學(xué)的健身方案和營(yíng)養(yǎng)建議。2、(本題5分)某房地產(chǎn)公司積累了樓盤銷售數(shù)據(jù)、客戶需求、市場(chǎng)趨勢(shì)等信息。思考如何根據(jù)這些數(shù)據(jù)進(jìn)行精準(zhǔn)的市場(chǎng)定位和營(yíng)銷策略制定。3、(本題5分)某服裝定制企業(yè)掌握了客戶的身體尺寸數(shù)據(jù)、款式偏好、面料選擇等。思考如何通過(guò)這些數(shù)據(jù)實(shí)現(xiàn)更精準(zhǔn)的服裝定制和生產(chǎn)流程優(yōu)化。4、(本題5分)某金融公司擁有客戶的信用記錄、貸款金額、還款情況等數(shù)據(jù)。分析客戶的信用風(fēng)險(xiǎn),構(gòu)建信用評(píng)估模型,以降低貸款違約率。5、(本題5分)一家快遞公司的同城配送業(yè)務(wù)記錄了配送數(shù)據(jù),包括貨物重量、配送距離、配送時(shí)間、費(fèi)用等。研究貨物重量和配送距離對(duì)配送時(shí)間和費(fèi)用的影響。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)對(duì)于電商平臺(tái)的用

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論