![2025年粵教版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷_第1頁](http://file4.renrendoc.com/view14/M0B/15/23/wKhkGWemxeeARtLzAADZiUd8yDg572.jpg)
![2025年粵教版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷_第2頁](http://file4.renrendoc.com/view14/M0B/15/23/wKhkGWemxeeARtLzAADZiUd8yDg5722.jpg)
![2025年粵教版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷_第3頁](http://file4.renrendoc.com/view14/M0B/15/23/wKhkGWemxeeARtLzAADZiUd8yDg5723.jpg)
![2025年粵教版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷_第4頁](http://file4.renrendoc.com/view14/M0B/15/23/wKhkGWemxeeARtLzAADZiUd8yDg5724.jpg)
![2025年粵教版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷_第5頁](http://file4.renrendoc.com/view14/M0B/15/23/wKhkGWemxeeARtLzAADZiUd8yDg5725.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年粵教版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷385考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共5題,共10分)1、已知等比數(shù)列{an}的公比q=-則等于()
A.-3
B.-
C.
D.3
2、【題文】已知集合若則a的取值范圍為()A.B.C.D.3、【題文】兩圓C1:x2+y2=1和C2:(x-3)2+(y-4)2=16的公切線有()A.4條B.3條C.2條D.1條4、【題文】函數(shù)的定義域?yàn)椋ǎ〢.B.C.D.5、【題文】已知點(diǎn)在曲線上,若線段與曲線相交且交點(diǎn)恰為線段的中點(diǎn),則稱為曲線關(guān)于曲線的一個(gè)關(guān)聯(lián)點(diǎn).記曲線關(guān)于曲線的關(guān)聯(lián)點(diǎn)的個(gè)數(shù)為則()A.B.C.D.評(píng)卷人得分二、填空題(共8題,共16分)6、已知冪函數(shù)f(x)的圖象過點(diǎn)(4,2),那么,f(3)與f(π)的大小關(guān)系是為____.7、函數(shù)單調(diào)遞減區(qū)間是_____________.8、已知sinx+cosx=-x?[π,2π]則sinx-cosx=9、某地一天6時(shí)至20時(shí)的溫度變化近似滿足函數(shù)y=10sin()+20,(x∈[6,20]),其中x表示時(shí)間,y表示溫度,設(shè)溫度不低于20,某人可以進(jìn)行室外活動(dòng),則此人在6時(shí)至20時(shí)中,可以進(jìn)行室外活動(dòng)的時(shí)間約為____小時(shí).10、不等式(a﹣2)x2﹣2(a﹣2)x﹣4<0對(duì)x∈R恒成立,則實(shí)數(shù)a的取值范圍為____11、設(shè)一扇形的弧長為4cm,面積為4cm2,則這個(gè)扇形的圓心角的弧度數(shù)是______.12、若x,y均為正數(shù),且9x+y=xy,則x+y的最小值是______.13、|a鈫?|=2b鈫?=(鈭?1,1),c鈫?=(2,鈭?2),a鈫?鈰?(b鈫?+c鈫?)=1.鈫?脫毛b鈫?碌脛錄脨陸脟脦陋
______.評(píng)卷人得分三、證明題(共8題,共16分)14、AB是圓O的直徑,CD是圓O的一條弦,AB與CD相交于E,∠AEC=45°,圓O的半徑為1,求證:EC2+ED2=2.15、如圖;過圓O外一點(diǎn)D作圓O的割線DBA,DE與圓O切于點(diǎn)E,交AO的延長線于F,AF交圓O于C,且AD⊥DE.
(1)求證:E為的中點(diǎn);
(2)若CF=3,DE?EF=,求EF的長.16、已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長線交圓于D,求證:AG2=GC?GD.17、已知ABCD四點(diǎn)共圓,AB與DC相交于點(diǎn)E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點(diǎn),求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.18、如圖;已知AB是⊙O的直徑,P是AB延長線上一點(diǎn),PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:
(1)AD=AE
(2)PC?CE=PA?BE.19、求證:(1)周長為21的平行四邊形能夠被半徑為的圓面所覆蓋.
(2)桌面上放有一絲線做成的線圈,它的周長是2l,不管線圈形狀如何,都可以被個(gè)半徑為的圓紙片所覆蓋.20、如圖;過圓O外一點(diǎn)D作圓O的割線DBA,DE與圓O切于點(diǎn)E,交AO的延長線于F,AF交圓O于C,且AD⊥DE.
(1)求證:E為的中點(diǎn);
(2)若CF=3,DE?EF=,求EF的長.21、已知ABCD四點(diǎn)共圓,AB與DC相交于點(diǎn)E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點(diǎn),求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評(píng)卷人得分四、計(jì)算題(共4題,共36分)22、相交兩圓半徑分別是5厘米、3厘米,公共弦長2厘米,那么這兩圓的公切線長為____厘米.23、如圖,在矩形ABCD中,AB=6,AD=4,E是AD邊上一點(diǎn)(點(diǎn)E與A、D不重合).BE的垂直平分線交AB于M;交DC于N.
(1)設(shè)AE=x;試把AM用含x的代數(shù)式表示出來;
(2)設(shè)AE=x,四邊形ADNM的面積為S.寫出S關(guān)于x的函數(shù)關(guān)系式.24、分解因式:
(1)2x3-8x=____
(2)x3-5x2+6x=____
(3)4x4y2-5x2y2-9y2=____
(4)3x2-10xy+3y2=____.25、計(jì)算:0.0081+(4)2+()﹣16﹣0.75+2.評(píng)卷人得分五、作圖題(共4題,共12分)26、作出下列函數(shù)圖象:y=27、請(qǐng)畫出如圖幾何體的三視圖.
28、某潛艇為躲避反潛飛機(jī)的偵查,緊急下潛50m后,又以15km/h的速度,沿北偏東45°前行5min,又以10km/h的速度,沿北偏東60°前行8min,最后擺脫了反潛飛機(jī)的偵查.試畫出潛艇整個(gè)過程的位移示意圖.29、已知簡單組合體如圖;試畫出它的三視圖(尺寸不做嚴(yán)格要求)
評(píng)卷人得分六、綜合題(共4題,共8分)30、如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點(diǎn)F(4;0);與y軸正半軸交于點(diǎn)E(0,4),邊長為4的正方形ABCD的頂點(diǎn)D與原點(diǎn)O重合,頂點(diǎn)A與點(diǎn)E重合,頂點(diǎn)C與點(diǎn)F重合;
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2;若正方形ABCD在平面內(nèi)運(yùn)動(dòng),并且邊BC所在的直線始終與x軸垂直,拋物線與邊AB交于點(diǎn)P且同時(shí)與邊CD交于點(diǎn)Q.設(shè)點(diǎn)A的坐標(biāo)為(m,n)
①當(dāng)PO=PF時(shí);分別求出點(diǎn)P和點(diǎn)Q的坐標(biāo)及PF所在直線l的函數(shù)解析式;
②當(dāng)n=2時(shí);若P為AB邊中點(diǎn),請(qǐng)求出m的值;
(3)若點(diǎn)B在第(2)①中的PF所在直線l上運(yùn)動(dòng);且正方形ABCD與拋物線有兩個(gè)交點(diǎn),請(qǐng)直接寫出m的取值范圍.
31、二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)是,它與x軸的一個(gè)交點(diǎn)B的坐標(biāo)是(-2,0),另一個(gè)交點(diǎn)的是C,它與y軸相交于D,O為坐標(biāo)原點(diǎn).試問:y軸上是否存在點(diǎn)P,使得△POB∽△DOC?若存在,試求出過P、B兩點(diǎn)的直線的解析式;若不存在,說明理由.32、數(shù)學(xué)課上;老師提出:
如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為(1,0),點(diǎn)B在x軸上,且在點(diǎn)A的右側(cè),AB=OA,過點(diǎn)A和B作x軸的垂線,分別交二次函數(shù)y=x2的圖象于點(diǎn)C和D,直線OC交BD于點(diǎn)M,直線CD交y軸于點(diǎn)H,記點(diǎn)C、D的橫坐標(biāo)分別為xC、xD,點(diǎn)H的縱坐標(biāo)為yH.
同學(xué)發(fā)現(xiàn)兩個(gè)結(jié)論:
①S△CMD:S梯形ABMC=2:3②數(shù)值相等關(guān)系:xC?xD=-yH
(1)請(qǐng)你驗(yàn)證結(jié)論①和結(jié)論②成立;
(2)請(qǐng)你研究:如果上述框中的條件“A的坐標(biāo)(1;0)”改為“A的坐標(biāo)(t,0)(t>0)”,其他條件不變,結(jié)論①是否仍成立(請(qǐng)說明理由);
(3)進(jìn)一步研究:如果上述框中的條件“A的坐標(biāo)(1,0)”改為“A的坐標(biāo)(t,0)(t>0)”,又將條件“y=x2”改為“y=ax2(a>0)”,其他條件不變,那么xC、xD與yH有怎樣的數(shù)值關(guān)系?(寫出結(jié)果并說明理由)33、如圖,已知P為∠AOB的邊OA上的一點(diǎn),以P為頂點(diǎn)的∠MPN的兩邊分別交射線OB于M、N兩點(diǎn),且∠MPN=∠AOB=α(α為銳角).當(dāng)∠MPN以點(diǎn)P為旋轉(zhuǎn)中心,PM邊與PO重合的位置開始,按逆時(shí)針方向旋轉(zhuǎn)(∠MPN保持不變)時(shí),M、N兩點(diǎn)在射線OB上同時(shí)以不同的速度向右平行移動(dòng).設(shè)OM=x,ON=y(y>x>0),△POM的面積為S.若sinα=;OP=2.
(1)當(dāng)∠MPN旋轉(zhuǎn)30°(即∠OPM=30°)時(shí);求點(diǎn)N移動(dòng)的距離;
(2)求證:△OPN∽△PMN;
(3)寫出y與x之間的關(guān)系式;
(4)試寫出S隨x變化的函數(shù)關(guān)系式,并確定S的取值范圍.參考答案一、選擇題(共5題,共10分)1、B【分析】
∵==q=-
故選B.
【解析】【答案】把所給式子的分子用(a2+a6)?q來代替;約分化簡可得它的值等于q.
2、B【分析】【解析】
試題分析:畫出集合A,B的數(shù)軸表示,因?yàn)樗怨蔬xB.
考點(diǎn):集合包含【解析】【答案】B3、B【分析】【解析】∵C1(0,0),C2(3,4),r1=1,r2=4,
∴|C1C2|=5.
∴|C1C2|=r1+r2.
∴兩圓相外切.
故有三條公切線.【解析】【答案】B4、C【分析】【解析】
試題分析:求函數(shù)定義域就是列出使函數(shù)有意義的所有條件.因?yàn)榍宜郧壹春瘮?shù)的定義域?yàn)?/p>
考點(diǎn):函數(shù)定義域【解析】【答案】C5、B【分析】【解析】
試題分析:設(shè)則的中點(diǎn)為所以有因此關(guān)聯(lián)點(diǎn)的個(gè)數(shù)就為方程解得個(gè)數(shù),由于函數(shù)在區(qū)間上分別單調(diào)增及單調(diào)減,所以只有一個(gè)交點(diǎn),即
考點(diǎn):函數(shù)圖像【解析】【答案】B二、填空題(共8題,共16分)6、略
【分析】
設(shè)冪函數(shù)f(x)的解析式為f(x)=xα,則由冪函數(shù)f(x)的圖象過點(diǎn)(4,2),可得4α=2,∴α=
故f(x)=∴f(3)=f(π)=故f(3)<f(π);
故答案為f(3)<f(π).
【解析】【答案】設(shè)f(x)=xα,則由冪函數(shù)f(x)的圖象過點(diǎn)(4,2),求得α=可得f(x)=求得f(3)和f(π)的值,可得f(3)與f(π)的大?。?/p>
7、略
【分析】試題分析:根據(jù)題意,函數(shù)分解成兩部分,是內(nèi)層函數(shù)是外層函數(shù);根據(jù)復(fù)合函數(shù)的單調(diào)性,可得函數(shù)單調(diào)增函數(shù),則函數(shù)單調(diào)遞減區(qū)間就是函數(shù)單調(diào)遞減區(qū)間,所以考慮到函數(shù)的定義域,得.故正確答案為考點(diǎn):復(fù)合函數(shù)的單調(diào)性,對(duì)數(shù)函數(shù),二次函數(shù)的單調(diào)性.【解析】【答案】8、略
【分析】【解析】
因?yàn)閟inx+cosx=-x?[π,2π],則(sinx-cosx)2=1-2sinxcosx而(sinx+cosx)2==1+2sinxcosx,這樣就可以求解得到sinxcosx>0,故角在第三象限,那么并且和為負(fù)數(shù),說明了sinx-cosx<0,,解得為-【解析】【答案】-9、8【分析】【解答】解:由題意,10sin()+20≥20
∴sin()≥0
∴2kπ≤≤2kπ+π
∴16k﹣6≤x≤16k+2;
∵x∈[6;20];
∴10≤x≤18
∴此人在6時(shí)至20時(shí)中;可以進(jìn)行室外活動(dòng)的時(shí)間約為18﹣10=8小時(shí)。
故答案為:8
【分析】利用溫度不低于20,建立不等式,結(jié)合x的范圍,即可得到此人在6時(shí)至20時(shí)中,可以進(jìn)行室外活動(dòng)的時(shí)間.10、﹣2<a≤2【分析】【解答】解:∵不等式(a﹣2)x2﹣2(a﹣2)x﹣4<0對(duì)x∈R恒成立;∴當(dāng)a=2時(shí),﹣4<0對(duì)任意實(shí)數(shù)x都成立;
當(dāng)a≠2時(shí),解得:﹣2<a<2;
綜上所述;﹣2<a≤2.
故答案為:﹣2<a≤2.
【分析】依題意,分a=2與a≠2兩類討論,即可求得實(shí)數(shù)a的取值范圍.11、略
【分析】解:因?yàn)樯刃蔚幕¢Ll為4;面積S為4;
所以扇形的半徑r為:r=4,r=2,則扇形的圓心角α的弧度數(shù)為=2.
故答案為:2.
利用扇形的面積求出扇形的半徑;然后求出扇形的圓心角即可.
本題考查扇形面積、扇形的弧長公式的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.【解析】212、略
【分析】解:根據(jù)題意,若9x+y=xy,則有+=1;
則x+y=(x+y)(+)=10++≥10+2=16;
即x+y的最小值是16;
故答案為:16.
根據(jù)題意,將9x+y=xy變形可得+=1,進(jìn)而分析可得x+y=(x+y)(+)=10++結(jié)合基本不等式的性質(zhì)分析可得答案.
本題考查基本不等式的性質(zhì)、應(yīng)用,關(guān)鍵是對(duì)9x+y=xy變形,得到x、y的關(guān)系.【解析】1613、略
【分析】解:隆脽b鈫?=(鈭?1,1)c鈫?=(2,鈭?2)
隆脿b鈫?+c鈫?=(1,鈭?1)=鈭?b鈫?
隆脿|b鈫?+c鈫?|=2
設(shè)a鈫?
與b鈫?
的夾角為婁脠
則a鈫?
與b鈫?+c鈫?
的夾角為婁脨鈭?婁脠
隆脽a鈫??(b鈫?+c鈫?)=|a鈫?|?|b鈫?+c鈫?|cos(婁脨鈭?婁脠)=2隆脕2隆脕(鈭?cos婁脠)=1
隆脿co婁脠=鈭?12
隆脽0鈮?婁脠鈮?婁脨
隆脿婁脠=2婁脨3
故答案為:2婁脨3
根據(jù)向量的坐標(biāo)運(yùn)算和的向量的共線定理以及向量的夾角公式計(jì)算即可.
本題考查了向量的坐標(biāo)運(yùn)算和的向量的共線定理以及向量的夾角公式,屬于基礎(chǔ)題【解析】2婁脨3
三、證明題(共8題,共16分)14、略
【分析】【分析】首先作CD關(guān)于AB的對(duì)稱直線FG,由∠AEC=45°,即可證得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易證得O,C,G,E四點(diǎn)共圓,則可求得CG2=OC2+OG2=2.繼而證得EC2+ED2=2.【解析】【解答】證明:作CD關(guān)于AB的對(duì)稱直線FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四點(diǎn)共圓.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.15、略
【分析】【分析】要證E為中點(diǎn),可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE
OA=OE=>∠OAE=∠OEA
DE切圓O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
?OE∥AD
=>E為的中點(diǎn).
(2)解:連CE;則∠AEC=90°,設(shè)圓O的半徑為x
∠ACE=∠AED=>Rt△ADE∽R(shí)t△AEC=>
DE切圓O于E=>△FCE∽△FEA
∴,
∴
即DE?EF=AD?CF
DE?EF=;CF=3
∴AD=
OE∥AD=>=>=>8x2+7x-15=0
∴x1=1,x2=-(舍去)
∴EF2=FC?FA=3x(3+2)=15
∴EF=16、略
【分析】【分析】構(gòu)造以重心G為頂點(diǎn)的平行四邊形GBFC,并巧用A、D、F、C四點(diǎn)共圓巧證乘積.延長GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點(diǎn)共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長GP至F;使PF=PG,連接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四邊形GBFC是平行四邊形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵過A;G的圓與BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四點(diǎn)共圓;
∴GA;GF=GC?GD;
即GA2=GC?GD.17、略
【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時(shí)發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實(shí)現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;
由圖知:∠FDC是△ACD的一個(gè)外角;
則有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四邊形ABCD是圓的內(nèi)接四邊形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分別是∠AFB、∠AED的角平分線;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)連接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可證得∠NEX=∠MEX;
故FX、EX分別平分∠MFN與∠MEN.18、略
【分析】【分析】(1)連AC;BC;OC,如圖,根據(jù)切線的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD;
即可得到結(jié)論;
(2)根據(jù)三角形相似的判定易證Rt△PCE∽R(shí)t△PAD,Rt△EBC∽R(shí)t△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,
∵PC是⊙O的切線;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽R(shí)t△PAD;
∴PC:PA=CE:AD;
又∵AB為⊙O的直徑;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽R(shí)t△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC?CE=PA?BE.19、略
【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對(duì)稱圖形,可讓覆蓋圓圓心與平行四邊形對(duì)角線交點(diǎn)疊合.
(2)“曲“化“直“.對(duì)比(1),應(yīng)取均分線圈的二點(diǎn)連線段中點(diǎn)作為覆蓋圓圓心.【解析】【解答】
證明:(1)如圖1;設(shè)ABCD的周長為2l,BD≤AC,AC;BD交于O,P為周界上任意一點(diǎn),不妨設(shè)在AB上;
則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周長為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.
(2)如圖2,在線圈上分別取點(diǎn)R,Q,使R、Q將線圈分成等長兩段,每段各長l.又設(shè)RQ中點(diǎn)為G,M為線圈上任意一點(diǎn),連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G為圓心,長為半徑的圓紙片可以覆蓋住整個(gè)線圈.20、略
【分析】【分析】要證E為中點(diǎn),可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE
OA=OE=>∠OAE=∠OEA
DE切圓O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
?OE∥AD
=>E為的中點(diǎn).
(2)解:連CE;則∠AEC=90°,設(shè)圓O的半徑為x
∠ACE=∠AED=>Rt△ADE∽R(shí)t△AEC=>
DE切圓O于E=>△FCE∽△FEA
∴,
∴
即DE?EF=AD?CF
DE?EF=;CF=3
∴AD=
OE∥AD=>=>=>8x2+7x-15=0
∴x1=1,x2=-(舍去)
∴EF2=FC?FA=3x(3+2)=15
∴EF=21、略
【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時(shí)發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實(shí)現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;
由圖知:∠FDC是△ACD的一個(gè)外角;
則有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四邊形ABCD是圓的內(nèi)接四邊形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分別是∠AFB、∠AED的角平分線;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)連接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可證得∠NEX=∠MEX;
故FX、EX分別平分∠MFN與∠MEN.四、計(jì)算題(共4題,共36分)22、略
【分析】【分析】①連接CD交EF于O;連接CE,CA,DB,過D作DQ⊥CA于Q,根據(jù)勾股定理求出CO;DO,求出CD,證矩形DQAB,推出AQ=DB,AB=DQ,根據(jù)勾股定理求出DQ即可;
②求出CD=2-2,根據(jù)勾股定理求出即可.【解析】【解答】解:有兩種情況:
①連接CD交EF于O;連接CE,CA,DB,過D作DQ⊥CA于Q;
∵EF是圓C和圓D的公共弦;
∴CD⊥EF;EO=FO=1;
在△CDE中,由勾股定理得:CO==2;
同理求出DO=2;
∴CD=2+2;
∵AB是兩圓的外公切線;
∴QA⊥AB;DB⊥AB;
∵DQ⊥CA;
∴∠DQA=∠CAB=∠DBA=90°;
∴四邊形AQDB是矩形,
∴AB=DQ;AQ=DB=3;
∴CQ=5-3=2;
在△CDQ中,由勾股定理得:DQ==4+2;
②如圖所示:
同理求出AB=4-2.
故答案為:4±2.23、略
【分析】【分析】(1)根據(jù)線段的垂直平分線推出BM=ME;根據(jù)勾股定理求出即可.
(2)連接ME,NE,NB,設(shè)AM=a,DN=b,NC=6-b,根據(jù)勾股定理得到AM2+AE2=ME2,DN2+DE2=NE2=BN2=BC2+CN2,代入求出即可.【解析】【解答】解:(1)連接ME.
∵M(jìn)N是BE的垂直平分線;
∴BM=ME=6-AM;
在△AME中;∠A=90°;
由勾股定理得:AM2+AE2=ME2;
AM2+x2=(6-AM)2;
AM=3-x.
(2)連接ME,NE,NB,設(shè)AM=a,DN=b,NC=6-b;
因MN垂直平分BE;
則ME=MB=6-a;NE=NB;
所以由勾股定理得
AM2+AE2=ME2,DN2+DE2=NE2=BN2=BC2+CN2
即a2+x2=(6-a)2,b2+(4-x)2=42+(6-b)2;
解得a=3-x2,b=x2+x+3;
所以四邊形ADNM的面積為S=×(a+b)×4=2x+12;
即S關(guān)于x的函數(shù)關(guān)系為S=2x+12(0<x<2);
答:S關(guān)于x的函數(shù)關(guān)系式是S=2x+12.24、略
【分析】【分析】(1)原式提取2x;再利用平方差公式分解即可;
(2)原式提取x;再利用十字相乘法分解即可;
(3)原式提取公因式;再利用平方差公式分解即可;
(4)原式利用十字相乘法分解即可.【解析】【解答】解:(1)原式=2x(x2-4)=2x(x+2)(x-2);
(2)原式=x(x2-5x+6)=x(x-3)(x-2);
(3)原式=y2(4x4-5x2-9)=y2(4x2-9)(x2+1)=y2(2x+3)(2x-3)(x2+1);
(4)原式=(3x-y)(x-3y);
故答案為:(1)2x(x+2)(x-2);(2)x(x-3)(x-2);(3)y2(2x+3)(2x-3)(x2+1);(4)(3x-y)(x-3y)25、解:原式=++﹣24×(﹣0.75)+5=0.3++﹣+5=5.55【分析】【分析】根據(jù)指數(shù)冪和對(duì)數(shù)的運(yùn)算性質(zhì)化簡即可.五、作圖題(共4題,共12分)26、【解答】冪函數(shù)y={#mathml#}x32
{#/mathml#}的定義域是[0;+∞),圖象在第一象限,過原點(diǎn)且單調(diào)遞增,如圖所示;
【分析】【分析】根據(jù)冪函數(shù)的圖象與性質(zhì),分別畫出題目中的函數(shù)圖象即可.27、解:如圖所示:
【分析】【分析】由幾何體是圓柱上面放一個(gè)圓錐,從正面,左面,上面看幾何體分別得到的圖形分別是長方形上邊加一個(gè)三角形,長方形上邊加一個(gè)三角形,圓加一點(diǎn).28、解:由題意作示意圖如下;
【分析】【分析】由題意作示意圖。29、
解:幾何體的三視圖為:
【分析】【分析】利用三視圖的作法,畫出三視圖即可.六、綜合題(共4題,共8分)30、略
【分析】【分析】(1)已知拋物線的對(duì)稱軸是y軸;頂點(diǎn)是(0,4),經(jīng)過點(diǎn)(4,0),利用待定系數(shù)法即可求得函數(shù)的解析式;
(2)①過點(diǎn)P作PG⊥x軸于點(diǎn)G;根據(jù)三線合一定理可以求得G的坐標(biāo),則P點(diǎn)的橫坐標(biāo)可以求得,把P的橫坐標(biāo)代入拋物線的解析式,即可求得縱坐標(biāo),得到P的坐標(biāo),再根據(jù)正方形的邊長是4,即可求得Q的縱坐標(biāo),代入拋物線的解析式即可求得Q的坐標(biāo),然后利用待定系數(shù)法即可求得直線PF的解析式;
②已知n=2;即A的縱坐標(biāo)是2,則P的縱坐標(biāo)一定是2,把y=2代入拋物線的解析式即可求得P的橫坐標(biāo),根據(jù)AP=2,且AP∥y軸,即可得到A的橫坐標(biāo),從而求得m的值;
(3)假設(shè)B在M點(diǎn)時(shí),C在拋物線上或假設(shè)當(dāng)B點(diǎn)在N點(diǎn)時(shí),D點(diǎn)同時(shí)在拋物線上時(shí),求得兩個(gè)臨界點(diǎn),當(dāng)B在MP和FN之間移動(dòng)時(shí),拋物線與正方形有兩個(gè)交點(diǎn).【解析】【解答】解:(1)由拋物線y=ax2+c經(jīng)過點(diǎn)E(0;4),F(xiàn)(4,0)
,解得;
∴y=-x2+4;
(2)①過點(diǎn)P作PG⊥x軸于點(diǎn)G;
∵PO=PF∴OG=FG
∵F(4;0)∴OF=4
∴OG=OF=×4=2;即點(diǎn)P的橫坐標(biāo)為2
∵點(diǎn)P在拋物線上。
∴y=-×22+4=3;即P點(diǎn)的縱坐標(biāo)為3
∴P(2;3)
∵點(diǎn)P的縱坐標(biāo)為3;正方形ABCD邊長是4,∴點(diǎn)Q的縱坐標(biāo)為-1
∵點(diǎn)Q在拋物線上,∴-1=-x2+4
∴x1=2,x2=-2(不符題意;舍去)
∴Q(2;-1)
設(shè)直線PF的解析式是y=kx+b;
根據(jù)題意得:;
解得:,
則直線的解析式是:y=-x+6;
②當(dāng)n=2時(shí);則點(diǎn)P的縱坐標(biāo)為2
∵P在拋物線上,∴2=-x2+4
∴x1=2,x2=-2
∴P的坐標(biāo)為(2,2)或(-2;2)
∵P為AB中點(diǎn)∴AP=2
∴A的坐標(biāo)為(2-2,2)或(-2-2;2)
∴m的值為2-2或-2-2;
(3)假設(shè)B在M點(diǎn)時(shí);C在拋物線上,A的橫坐標(biāo)是m,則B的橫坐標(biāo)是m+4;
代入直線PF的解析式得:y=-(m+4)+6=-m;
則B的縱坐標(biāo)是-m,則C的坐標(biāo)是(m+4,-m-4).
把C的坐標(biāo)代入拋物線的解析式得:-m-4=-(m+4)2+4,解得:m=-1-或-1+(舍去);
當(dāng)B在E點(diǎn)時(shí);AB經(jīng)過拋物線的頂點(diǎn),則E的縱坐標(biāo)是4;
把y=4代入y=-x+6,得4=-x+6,解得:x=;
此時(shí)A的坐標(biāo)是(-,4),E的坐標(biāo)是:(;4),此時(shí)正方形與拋物線有3個(gè)交點(diǎn).
當(dāng)點(diǎn)B在E點(diǎn)時(shí),正方形與拋物線有兩個(gè)交點(diǎn),此時(shí)-1-<m<-;
當(dāng)點(diǎn)B在E和P點(diǎn)之間時(shí),正方形與拋物線有三個(gè)交點(diǎn),此時(shí):-<x<-2;
當(dāng)B在P點(diǎn)時(shí);有兩個(gè)交點(diǎn);
假設(shè)當(dāng)B點(diǎn)在N點(diǎn)時(shí);D點(diǎn)同時(shí)在拋物線上時(shí);
同理,C的坐標(biāo)是(m+4,-m-4),則D點(diǎn)的坐標(biāo)是:(m,-m-4);
把D的坐標(biāo)代入拋物線的解析式得:-m-4=-m2+4,解得:m=3+或3-(舍去);
當(dāng)B在F與N之間時(shí),拋物線與正方形有兩個(gè)交點(diǎn).此時(shí)0<m<3+.
故m的范圍是:-1-<m-或m=2或0<m<3+.31、略
【分析】【分析】先根據(jù)條件利用待定系數(shù)法求出拋物線的解析式,然后根據(jù)解析式求出點(diǎn)D,點(diǎn)C的坐標(biāo),最后根據(jù)相似三角形的性質(zhì)求出點(diǎn)P的坐標(biāo),根據(jù)P、B兩點(diǎn)的坐標(biāo)利用待定系數(shù)法就可以求出直線PB的解析式.【解析】【解答】解:∵二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)是;它與x軸的一個(gè)交點(diǎn)B的坐標(biāo)是(-2,0);
∴設(shè)拋物線的解析式為:將點(diǎn)B(-2;0)代入得;
;解得
a=-1
∴拋物線的解析式為:y=-x2+x+6.
當(dāng)x=0時(shí);y=6
∴D(0;6);
∴OD=6
y=0時(shí),x1=-2,x2=3
C(3;0);
∴OC=3;
∵B(-2;0);
∴OB=2.
∵△POB∽△DOC;
∴;
∴
∴PO=4
∴P(0;4)或P(0,-4);
設(shè)直線PB的解析式為:y=kx+b;
∴或;解得:
或
求得直線PB的解析式為:y=2x+4或y=-2x-4.
32、略
【分析】【分析】(1)可先根據(jù)AB=OA得出B點(diǎn)的坐標(biāo);然后根據(jù)拋物線的解析式和A,B的坐標(biāo)得出C,D兩點(diǎn)的坐標(biāo),再依據(jù)C點(diǎn)的坐標(biāo)求出直線OC的解析式.進(jìn)而可求出M點(diǎn)的坐標(biāo),然后根據(jù)C;D兩點(diǎn)的坐標(biāo)求出直線CD的解析式進(jìn)而求出D點(diǎn)的坐標(biāo),然后可根據(jù)這些點(diǎn)的坐標(biāo)進(jìn)行求解即可;
(2)(3)的解法同(1)完全一樣.【解析】【解答】解:(1)由已知可得點(diǎn)B的坐標(biāo)為(2;0),點(diǎn)C坐標(biāo)為(1,1),點(diǎn)D的坐標(biāo)為(2,4);
由點(diǎn)C坐標(biāo)為(1;1)易得直線OC的函數(shù)解析式為y=x;
故點(diǎn)M的坐標(biāo)為(2;2);
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國主備自動(dòng)切換C波段收發(fā)信機(jī)市場(chǎng)調(diào)查研究報(bào)告
- 2025年豆芽項(xiàng)目可行性研究報(bào)告
- 2025年肥料定氮儀項(xiàng)目可行性研究報(bào)告
- 2025年硅膠真空袋材料項(xiàng)目可行性研究報(bào)告
- 2025年毛混紡產(chǎn)品項(xiàng)目可行性研究報(bào)告
- 2025年無水碘化鈉項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國多功能壓力校驗(yàn)儀行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年圓頭六角重型鏈條鎖項(xiàng)目可行性研究報(bào)告
- 2025年半不銹鋼母嬰一體床項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國ARA油行業(yè)投資前景及策略咨詢研究報(bào)告
- 2024年最新全國交管12123駕駛證學(xué)法減分(學(xué)法免分)考試題庫附答案
- 拼音練習(xí)字帖(打印版)
- 拖拉機(jī)駕駛員培訓(xùn)(課件)
- 寫字樓招租推廣方案
- 安踏單店貨品管理資料課件
- 藥店信息處理與保密技巧
- 兩辦意見八硬措施煤礦安全生產(chǎn)條例宣貫學(xué)習(xí)課件
- 蒙曼品最美唐詩:全三冊(cè)
- 未成年法制安全教育課件
- 鋰電新能源項(xiàng)目融資計(jì)劃書
- 《體育與健康說課》課件
評(píng)論
0/150
提交評(píng)論