安徽糧食工程職業(yè)學院《商業(yè)美術(shù)插圖》2023-2024學年第二學期期末試卷_第1頁
安徽糧食工程職業(yè)學院《商業(yè)美術(shù)插圖》2023-2024學年第二學期期末試卷_第2頁
安徽糧食工程職業(yè)學院《商業(yè)美術(shù)插圖》2023-2024學年第二學期期末試卷_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記。…………密………………封………………線…………第1頁,共1頁安徽糧食工程職業(yè)學院

《商業(yè)美術(shù)插圖》2023-2024學年第二學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺中,目標檢測是一項重要任務(wù)。假設(shè)我們要開發(fā)一個能夠在交通場景中檢測車輛的系統(tǒng)。如果圖像中的車輛存在多種姿態(tài)、大小和光照條件的變化,以下哪種目標檢測算法可能更適合應(yīng)對這種復(fù)雜情況?()A.基于傳統(tǒng)特征的檢測算法,如HOG特征結(jié)合SVM分類器B.基于深度學習的FasterR-CNN算法C.基于模板匹配的檢測算法D.基于顏色特征的檢測算法2、計算機視覺中的姿態(tài)估計是指確定物體在三維空間中的位置和方向。以下關(guān)于姿態(tài)估計的說法,錯誤的是()A.姿態(tài)估計可以通過單目相機、雙目相機或深度相機來實現(xiàn)B.基于深度學習的方法在姿態(tài)估計任務(wù)中表現(xiàn)出了較高的精度C.姿態(tài)估計在機器人操作、增強現(xiàn)實等領(lǐng)域有著重要的應(yīng)用價值D.姿態(tài)估計的結(jié)果總是非常精確,不受物體形狀和遮擋的影響3、當利用計算機視覺進行圖像去模糊任務(wù),恢復(fù)清晰的圖像,以下哪種先驗知識或約束可能有助于解決這個問題?()A.自然圖像的梯度稀疏性B.圖像的低頻成分C.圖像的邊緣信息D.以上都是4、計算機視覺在自動駕駛領(lǐng)域有重要應(yīng)用。假設(shè)車輛需要根據(jù)攝像頭采集的圖像來識別道路上的交通標志,并且要在不同天氣和光照條件下都能準確識別。以下哪種方法可能有助于提高交通標志識別的魯棒性?()A.使用多個不同類型的攝像頭獲取圖像B.僅依賴顏色特征進行識別C.采用簡單的線性分類器進行標志分類D.減少訓(xùn)練數(shù)據(jù)中的交通標志種類5、計算機視覺在文物保護和修復(fù)中的應(yīng)用逐漸增多。假設(shè)要對一幅古老的繪畫進行數(shù)字化修復(fù)和增強,以下關(guān)于顏色恢復(fù)的挑戰(zhàn),哪一項是最為顯著的?()A.由于年代久遠,原畫作的顏色信息缺失嚴重B.不同區(qū)域的顏色褪色程度不一致,難以統(tǒng)一恢復(fù)C.缺乏對原畫作創(chuàng)作時所用顏料的了解,難以準確還原顏色D.修復(fù)過程中可能引入新的顏色偏差,影響修復(fù)效果6、在計算機視覺的三維重建任務(wù)中,假設(shè)要從一組不同角度拍攝的二維圖像中重建出物體的三維模型。這些圖像可能存在噪聲和拍攝誤差。為了獲得準確的三維重建結(jié)果,以下哪種技術(shù)是重要的?()A.基于立體視覺的方法,通過匹配不同圖像中的對應(yīng)點B.直接使用二維圖像的平均信息來估計三維形狀C.忽略圖像中的噪聲和誤差,進行簡單的重建D.隨機生成三維模型,然后與二維圖像進行匹配7、在計算機視覺中,圖像分類是一項重要任務(wù)。假設(shè)我們要對大量的動物圖片進行分類,將其分為貓、狗、鳥等類別。以下關(guān)于圖像分類方法的描述,哪一項是不準確的?()A.基于深度學習的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類任務(wù)中表現(xiàn)出色,能夠自動學習圖像的特征B.傳統(tǒng)的機器學習方法如支持向量機(SVM)在處理大規(guī)模圖像數(shù)據(jù)時,性能通常不如深度學習方法C.圖像分類只需要考慮圖像的顏色和形狀等低層次特征,高層語義信息對分類結(jié)果影響不大D.為了提高分類準確率,可以使用數(shù)據(jù)增強技術(shù),如旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪等操作來擴充數(shù)據(jù)集8、在計算機視覺的目標識別任務(wù)中,除了識別目標的類別,還需要確定目標的位置和大小。假設(shè)我們要在一幅復(fù)雜的圖像中識別多個不同大小的物體,以下哪種目標識別算法能夠適應(yīng)不同尺度的目標?()A.基于滑動窗口的目標識別算法B.基于特征金字塔的目標識別算法C.基于注意力機制的目標識別算法D.基于模板匹配的目標識別算法9、計算機視覺在文物保護和修復(fù)中的應(yīng)用可以幫助記錄和分析文物的狀態(tài)。假設(shè)要對一件古老的雕塑進行數(shù)字化保存和修復(fù)建議。以下關(guān)于計算機視覺在文物保護中的描述,哪一項是錯誤的?()A.可以通過三維掃描技術(shù)獲取文物的精確形狀和表面細節(jié)B.能夠?qū)ξ奈锏念伾图y理進行分析,為修復(fù)提供參考C.計算機視覺可以完全替代人工的文物修復(fù)工作,保證修復(fù)的質(zhì)量和效果D.可以建立文物的數(shù)字檔案,方便后續(xù)的研究和展示10、在計算機視覺的實際應(yīng)用中,模型的實時性是一個重要的考慮因素。以下關(guān)于實時性的描述,不正確的是()A.對于一些需要實時響應(yīng)的應(yīng)用,如自動駕駛和工業(yè)檢測,模型的處理速度至關(guān)重要B.模型的復(fù)雜度、計算資源和算法效率都會影響實時性C.可以通過模型壓縮、硬件加速和優(yōu)化算法等方法來提高模型的實時性D.實時性只與模型本身有關(guān),與硬件設(shè)備和系統(tǒng)架構(gòu)無關(guān)11、計算機視覺在工業(yè)檢測中的應(yīng)用可以提高產(chǎn)品質(zhì)量和生產(chǎn)效率。假設(shè)一個工廠需要檢測生產(chǎn)線上的零件是否存在缺陷。以下關(guān)于工業(yè)檢測中的計算機視覺的描述,哪一項是不準確的?()A.能夠快速準確地檢測出零件的表面缺陷、尺寸偏差等問題B.可以通過機器視覺系統(tǒng)對零件進行自動分類和篩選C.工業(yè)檢測中的計算機視覺系統(tǒng)需要高度的穩(wěn)定性和可靠性,對環(huán)境變化不敏感D.計算機視覺在工業(yè)檢測中的應(yīng)用已經(jīng)非常成熟,不需要人工干預(yù)和校驗12、在計算機視覺中,特征提取是非常關(guān)鍵的一步。假設(shè)我們要對一組風景圖像進行特征提取,以便后續(xù)的圖像檢索和分類任務(wù)。以下哪種特征提取方法能夠捕捉到圖像的全局和局部特征,并且對圖像的旋轉(zhuǎn)、縮放等變換具有較好的不變性?()A.尺度不變特征變換(SIFT)B.方向梯度直方圖(HOG)C.局部二值模式(LBP)D.卷積神經(jīng)網(wǎng)絡(luò)自動學習的特征13、在一個基于計算機視覺的農(nóng)業(yè)監(jiān)測系統(tǒng)中,需要對農(nóng)作物的生長狀況進行評估,例如判斷葉片的顏色、形狀和病蟲害情況。以下哪種圖像分析方法可能對農(nóng)作物監(jiān)測較為有效?()A.顏色空間轉(zhuǎn)換B.形態(tài)學分析C.紋理分析D.以上都是14、在計算機視覺的應(yīng)用于自動駕駛領(lǐng)域,需要實時檢測道路上的交通標志和標線。假設(shè)車輛在高速行駛中,以下哪種技術(shù)能夠快速準確地檢測到各種交通標志,并且對光照變化和遮擋具有較強的魯棒性?()A.基于顏色和形狀特征的檢測方法B.基于深度學習的檢測方法,結(jié)合多尺度特征C.基于邊緣檢測和形態(tài)學操作的方法D.基于模板匹配和特征點匹配的方法15、計算機視覺中的圖像超分辨率技術(shù)用于提高圖像的分辨率。假設(shè)要將一張低分辨率的圖像恢復(fù)成高分辨率圖像,以下關(guān)于圖像超分辨率方法的描述,正確的是:()A.基于插值的圖像超分辨率方法能夠生成清晰逼真的高分辨率圖像B.深度學習中的生成對抗網(wǎng)絡(luò)(GAN)在圖像超分辨率任務(wù)中無法發(fā)揮作用C.圖像超分辨率的效果不受原始低分辨率圖像的質(zhì)量和內(nèi)容的限制D.結(jié)合先驗知識和深度學習的方法可以改善圖像超分辨率的效果二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述圖像的雙邊濾波的優(yōu)勢。2、(本題5分)描述計算機視覺在氣象災(zāi)害預(yù)警中的應(yīng)用。3、(本題5分)解釋計算機視覺中的模型蒸餾技術(shù)。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)使用深度學習模型,對歷史文物圖像進行年代和風格的鑒定。2、(本題5分)設(shè)計一個系統(tǒng),利用計算機視覺檢測電影院內(nèi)觀眾是否遵守觀影秩序。3、(本題5分)設(shè)計一個基于計算機視覺的簽名識別系統(tǒng)。4、(本題5分)運用計算機視覺技術(shù),對鐵路軌道的安全性進行檢測和預(yù)警。5、(本題5分)利用圖像增強技術(shù),改善逆光拍攝圖像的質(zhì)量。四、分析題(本大題共3個小題,共30分)1、(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論