廣東省茂名市第十中學(xué)2024年高三第一次調(diào)研考試數(shù)學(xué)試題文試題_第1頁
廣東省茂名市第十中學(xué)2024年高三第一次調(diào)研考試數(shù)學(xué)試題文試題_第2頁
廣東省茂名市第十中學(xué)2024年高三第一次調(diào)研考試數(shù)學(xué)試題文試題_第3頁
廣東省茂名市第十中學(xué)2024年高三第一次調(diào)研考試數(shù)學(xué)試題文試題_第4頁
廣東省茂名市第十中學(xué)2024年高三第一次調(diào)研考試數(shù)學(xué)試題文試題_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省茂名市第十中學(xué)2023年高三第一次調(diào)研考試數(shù)學(xué)試題文試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè),是方程的兩個不等實數(shù)根,記().下列兩個命題()①數(shù)列的任意一項都是正整數(shù);②數(shù)列存在某一項是5的倍數(shù).A.①正確,②錯誤 B.①錯誤,②正確C.①②都正確 D.①②都錯誤2.已知,,,則()A. B.C. D.3.設(shè)全集,集合,.則集合等于()A. B. C. D.4.拋物線的準線與軸的交點為點,過點作直線與拋物線交于、兩點,使得是的中點,則直線的斜率為()A. B. C.1 D.5.已知拋物線C:,過焦點F的直線l與拋物線C交于A,B兩點(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.36.己知函數(shù)的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.7.設(shè),,,則,,三數(shù)的大小關(guān)系是A. B.C. D.8.已知數(shù)列是以1為首項,2為公差的等差數(shù)列,是以1為首項,2為公比的等比數(shù)列,設(shè),,則當時,的最大值是()A.8 B.9 C.10 D.119.2019年10月17日是我國第6個“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動,現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種10.設(shè)復(fù)數(shù)z=,則|z|=()A. B. C. D.11.已知函數(shù)的最小正周期為,為了得到函數(shù)的圖象,只要將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度12.已知是函數(shù)的極大值點,則的取值范圍是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,為定長,,若的面積的最大值為,則邊的長為____________.14.(5分)已知函數(shù),則不等式的解集為____________.15.安排名男生和名女生參與完成項工作,每人參與一項,每項工作至少由名男生和名女生完成,則不同的安排方式共有________種(用數(shù)字作答).16.已知函數(shù)若關(guān)于的不等式的解集為,則實數(shù)的所有可能值之和為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面積的最大值.18.(12分)已知函數(shù)在上的最大值為3.(1)求的值及函數(shù)的單調(diào)遞增區(qū)間;(2)若銳角中角所對的邊分別為,且,求的取值范圍.19.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)存在零點,求的求值范圍.20.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認為質(zhì)量不過關(guān),再由另外2位行家進行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.21.(12分)記無窮數(shù)列的前項中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.22.(10分)已知(1)若,且函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)a的范圍;(2)若函數(shù)有兩個極值點,且存在滿足,令函數(shù),試判斷零點的個數(shù)并證明.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

利用韋達定理可得,,結(jié)合可推出,再計算出,,從而推出①正確;再利用遞推公式依次計算數(shù)列中的各項,以此判斷②的正誤.【詳解】因為,是方程的兩個不等實數(shù)根,所以,,因為,所以,即當時,數(shù)列中的任一項都等于其前兩項之和,又,,所以,,,以此類推,即可知數(shù)列的任意一項都是正整數(shù),故①正確;若數(shù)列存在某一項是5的倍數(shù),則此項個位數(shù)字應(yīng)當為0或5,由,,依次計算可知,數(shù)列中各項的個位數(shù)字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數(shù)列中不存在個位數(shù)字為0或5的項,故②錯誤;故選:A.【點睛】本題主要考查數(shù)列遞推公式的推導(dǎo),考查數(shù)列性質(zhì)的應(yīng)用,考查學(xué)生的綜合分析以及計算能力.2.C【解析】

利用二倍角公式,和同角三角函數(shù)的商數(shù)關(guān)系式,化簡可得,即可求得結(jié)果.【詳解】,所以,即.故選:C.【點睛】本題考查三角恒等變換中二倍角公式的應(yīng)用和弦化切化簡三角函數(shù),難度較易.3.A【解析】

先算出集合,再與集合B求交集即可.【詳解】因為或.所以,又因為.所以.故選:A.【點睛】本題考查集合間的基本運算,涉及到解一元二次不等式、指數(shù)不等式,是一道容易題.4.B【解析】

設(shè)點、,設(shè)直線的方程為,由題意得出,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,結(jié)合可求得的值,由此可得出直線的斜率.【詳解】由題意可知點,設(shè)點、,設(shè)直線的方程為,由于點是的中點,則,將直線的方程與拋物線的方程聯(lián)立得,整理得,由韋達定理得,得,,解得,因此,直線的斜率為.故選:B.【點睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問題,涉及韋達定理設(shè)而不求法的應(yīng)用,考查運算求解能力,屬于中等題.5.B【解析】

設(shè)直線的方程為代入拋物線方程,利用韋達定理可得,,由可知所以可得代入化簡求得參數(shù),即可求得結(jié)果.【詳解】設(shè),(,).易知直線l的斜率存在且不為0,設(shè)為,則直線l的方程為.與拋物線方程聯(lián)立得,所以,.因為,所以,得,所以,即,,所以.故選:B.【點睛】本題考查直線與拋物線的位置關(guān)系,考查韋達定理及向量的坐標之間的關(guān)系,考查計算能力,屬于中檔題.6.A【解析】

先將函數(shù)解析式化簡為,結(jié)合題意可求得切點及其范圍,根據(jù)導(dǎo)數(shù)幾何意義,即可求得的值.【詳解】函數(shù)即直線與函數(shù)圖象恰有四個公共點,結(jié)合圖象知直線與函數(shù)相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數(shù)的圖像與性質(zhì)的綜合應(yīng)用,由交點及導(dǎo)數(shù)的幾何意義求函數(shù)值,屬于難題.7.C【解析】

利用對數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質(zhì)和計算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.【點睛】本題考查對數(shù)值,指數(shù)值和正弦值大小的比較,是基礎(chǔ)題,解題時選擇合適的中間值比較是關(guān)鍵,注意合理地進行等價轉(zhuǎn)化.8.B【解析】

根據(jù)題意計算,,,解不等式得到答案.【詳解】∵是以1為首項,2為公差的等差數(shù)列,∴.∵是以1為首項,2為公比的等比數(shù)列,∴.∴.∵,∴,解得.則當時,的最大值是9.故選:.【點睛】本題考查了等差數(shù)列,等比數(shù)列,f分組求和,意在考查學(xué)生對于數(shù)列公式方法的靈活運用.9.B【解析】

分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計算出兩類的分配種數(shù),再由加法原理即可得到答案.【詳解】根據(jù)醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當醫(yī)院B只有1人,則共有種不同分配方案,當醫(yī)院B有2人,則共有種不同分配方案,所以當醫(yī)院A只分配1人時,共有種不同分配方案;第二類:若醫(yī)院A分配2人,當乙在醫(yī)院A時,共有種不同分配方案,當乙不在A醫(yī)院,在B醫(yī)院時,共有種不同分配方案,所以當醫(yī)院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應(yīng)用,在做此類題時,要做到分類不重不漏,考查學(xué)生分類討論的思想,是一道中檔題.10.D【解析】

先用復(fù)數(shù)的除法運算將復(fù)數(shù)化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.【點睛】本題考查復(fù)數(shù)的基本概念和基本運算,屬于基礎(chǔ)題.11.A【解析】

由的最小正周期是,得,即,因此它的圖象向左平移個單位可得到的圖象.故選A.考點:函數(shù)的圖象與性質(zhì).【名師點睛】三角函數(shù)圖象變換方法:12.B【解析】

方法一:令,則,,當,時,,單調(diào)遞減,∴時,,,且,∴,即在上單調(diào)遞增,時,,,且,∴,即在上單調(diào)遞減,∴是函數(shù)的極大值點,∴滿足題意;當時,存在使得,即,又在上單調(diào)遞減,∴時,,所以,這與是函數(shù)的極大值點矛盾.綜上,.故選B.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點,須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時,與相切于原點,所以根據(jù)與的圖象關(guān)系,可得,故選B.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設(shè),以為原點,為軸建系,則,,設(shè),,,利用求向量模的公式,可得,根據(jù)三角形面積公式進一步求出的值即為所求.【詳解】解:設(shè),以為原點,為軸建系,則,,設(shè),,則,即,由,可得.則.故答案為:.【點睛】本題考查向量模的計算,建系是關(guān)鍵,屬于難題.14.【解析】

易知函數(shù)的定義域為,且,則是上的偶函數(shù).由于在上單調(diào)遞增,而在上也單調(diào)遞增,由復(fù)合函數(shù)的單調(diào)性知在上單調(diào)遞增,又在上單調(diào)遞增,故知在上單調(diào)遞增.令,知,則不等式可化為,即,可得,又,是偶函數(shù),可得,由在上單調(diào)遞增,可得,則,解得,故不等式的解集為.15.1296【解析】

先從4個男生選2個一組,將4人分成三組,然后從4個女生選2個一組,將4人分成三組,然后全排列即可.【詳解】由于每項工作至少由名男生和名女生完成,則先從4個男生選2個一組,將4人分成三組,所以男生的排法共有,同理女生的排法共有,故不同的安排共有種.故答案為:1296【點睛】本題主要考查了排列組合的應(yīng)用,考查了學(xué)生應(yīng)用數(shù)學(xué)解決實際問題的能力.16.【解析】

由分段函數(shù)可得不滿足題意;時,,可得,即有,解方程可得,4,結(jié)合指數(shù)函數(shù)的圖象和二次函數(shù)的圖象即可得到所求和.【詳解】解:由函數(shù),可得的增區(qū)間為,,時,,,時,,當關(guān)于的不等式的解集為,,可得不成立,時,時,不成立;,即為,可得,即有,顯然,4成立;由和的圖象可得在僅有兩個交點.綜上可得的所有值的和為1.故答案為:1.【點睛】本題考查分段函數(shù)的圖象和性質(zhì),考查不等式的解法,注意運用分類討論思想方法,考查化簡運算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)根據(jù)正弦定理化簡得到,故,得到答案.(2)計算,再利用面積公式計算得到答案.【詳解】(1),則,即,故,,故.(2),故,故.當時等號成立.,故,,故△ABC面積的最大值為.【點睛】本題考查了正弦定理,面積公式,均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.18.(1),函數(shù)的單調(diào)遞增區(qū)間為;(2).【解析】

(1)運用降冪公式和輔助角公式,把函數(shù)的解析式化為正弦型函數(shù)解析式形式,根據(jù)已知,可以求出的值,再結(jié)合正弦型函數(shù)的性質(zhì)求出函數(shù)的單調(diào)遞增區(qū)間;(2)由(1)結(jié)合已知,可以求出角的值,通過正弦定理把問題的取值范圍轉(zhuǎn)化為兩邊對角的正弦值的比值的取值范圍,結(jié)合已知是銳角三角形,三角形內(nèi)角和定理,最后求出的取值范圍.【詳解】解:(1)由已知,所以因此令得因此函數(shù)的單調(diào)遞增區(qū)間為(2)由已知,∴由得,因此所以因為為銳角三角形,所以,解得因此,那么【點睛】本題考查了降冪公式、輔助角公式,考查了正弦定理,考查了正弦型三角函數(shù)的單調(diào)性,考查了數(shù)學(xué)運算能力.19.(1)或;(2).【解析】

(1)通過討論的范圍,將絕對值符號去掉,轉(zhuǎn)化為求不等式組的解集,之后取并集,得到原不等式的解集;(2)將函數(shù)零點問題轉(zhuǎn)化為曲線交點問題解決,數(shù)形結(jié)合得到結(jié)果.【詳解】(1)有題不等式可化為,當時,原不等式可化為,解得;當時,原不等式可化為,解得,不滿足,舍去;當時,原不等式可化為,解得,所以不等式的解集為.(2)因為,所以若函數(shù)存在零點則可轉(zhuǎn)化為函數(shù)與的圖像存在交點,函數(shù)在上單調(diào)增,在上單調(diào)遞減,且.數(shù)形結(jié)合可知.【點睛】該題考查的是有關(guān)不等式的問題,涉及到的知識點有分類討論求絕對值不等式的解集,將零點問題轉(zhuǎn)化為曲線交點的問題來解決,數(shù)形結(jié)合思想的應(yīng)用,屬于簡單題目.20.(1);(2)①可能是2件;②詳見解析【解析】

(1)由一件手工藝品質(zhì)量為B級的情形,并結(jié)合相互獨立事件的概率公式,列式計算即可;(2)①先求得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,可知,分別令、、,可求出使得最大的整數(shù),進而可求出10件手工藝品中不能外銷的手工藝品的最有可能件數(shù);②分別求出一件手工藝品質(zhì)量為A、B、C、D級的概率,進而可列出X的分布列,求出期望即可.【詳解】(1)一件手工藝品質(zhì)量為B級的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,則,則,其中,.由得,整數(shù)不存在,由得,所以當時,,即,由得,所以當時,,所以當時,最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由題意可知,一件手工藝品質(zhì)量為A級的概率為,一件手工藝品質(zhì)量為B級的概率為,一件手工藝品質(zhì)量為C級的概率為,一件手工藝品質(zhì)量為D級的概率為,所以X的分布列為:X900600300100P則期望為.【點睛】本題考查相互獨立事件的概率計算,考查離散型隨機變量的分布列及數(shù)學(xué)期望,考查學(xué)生的計算求解能力,屬于中檔題.21.(1)(2)證明見解析(3)證明見解析【解析】

(1)由是遞增數(shù)列,得,由此能求出的前項和.(2)推導(dǎo)出,,由此能證明的“極差數(shù)列”仍是.(3)證當數(shù)列是等差數(shù)列時,設(shè)其公差為,,是一個單調(diào)遞增數(shù)列,從而,,由,,,分類討論,能證明若數(shù)列是等差數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論