廣東省名校2023-2024學(xué)年高三第二次模擬考試數(shù)學(xué)試題(文理)合卷_第1頁
廣東省名校2023-2024學(xué)年高三第二次模擬考試數(shù)學(xué)試題(文理)合卷_第2頁
廣東省名校2023-2024學(xué)年高三第二次模擬考試數(shù)學(xué)試題(文理)合卷_第3頁
廣東省名校2023-2024學(xué)年高三第二次模擬考試數(shù)學(xué)試題(文理)合卷_第4頁
廣東省名校2023-2024學(xué)年高三第二次模擬考試數(shù)學(xué)試題(文理)合卷_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省名校2022-2023學(xué)年高三第二次模擬考試數(shù)學(xué)試題(文理)合卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點,則此點取自小等邊三角形(陰影部分)的概率是()A. B. C. D.2.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]3.復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知定點,,是圓上的任意一點,點關(guān)于點的對稱點為,線段的垂直平分線與直線相交于點,則點的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓5.把函數(shù)圖象上各點的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,再將圖象向右平移個單位,那么所得圖象的一個對稱中心為()A. B. C. D.6.方程的實數(shù)根叫作函數(shù)的“新駐點”,如果函數(shù)的“新駐點”為,那么滿足()A. B. C. D.7.已知某口袋中有3個白球和個黑球(),現(xiàn)從中隨機(jī)取出一球,再換回一個不同顏色的球(即若取出的是白球,則放回一個黑球;若取出的是黑球,則放回一個白球),記換好球后袋中白球的個數(shù)是.若,則=()A. B.1 C. D.28.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.9.高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學(xué)成績X近似服從正態(tài)分布,且.從中隨機(jī)抽取參加此次考試的學(xué)生500名,估計理科數(shù)學(xué)成績不低于110分的學(xué)生人數(shù)約為()A.40 B.60 C.80 D.10010.己知集合,,則()A. B. C. D.11.在平面直角坐標(biāo)系中,已知角的頂點與原點重合,始邊與軸的非負(fù)半軸重合,終邊落在直線上,則()A. B. C. D.12.如圖所示的程序框圖,若輸入,,則輸出的結(jié)果是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)實數(shù),若函數(shù)的最大值為,則實數(shù)的最大值為______.14.已知數(shù)列的各項均為正數(shù),滿足,.,若是等比數(shù)列,數(shù)列的通項公式_______.15.已知直線與圓心為的圓相交于兩點,且,則實數(shù)的值為_________.16.在中,內(nèi)角的對邊長分別為,已知,且,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四邊形中,,,.(1)求的長;(2)若的面積為6,求的值.18.(12分)分別為的內(nèi)角的對邊.已知.(1)若,求;(2)已知,當(dāng)?shù)拿娣e取得最大值時,求的周長.19.(12分)設(shè)函數(shù).(1)當(dāng)時,解不等式;(2)若的解集為,,求證:.20.(12分)在中,內(nèi)角的對邊分別是,滿足條件.(1)求角;(2)若邊上的高為,求的長.21.(12分)在中,角,,所對的邊分別是,,,且.(1)求的值;(2)若,求的取值范圍.22.(10分)如圖,焦點在軸上的橢圓與焦點在軸上的橢圓都過點,中心都在坐標(biāo)原點,且橢圓與的離心率均為.(Ⅰ)求橢圓與橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)過點M的互相垂直的兩直線分別與,交于點A,B(點A、B不同于點M),當(dāng)?shù)拿娣e取最大值時,求兩直線MA,MB斜率的比值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

根據(jù)幾何概率計算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點睛】本題考查了幾何概型的概率計算問題,是基礎(chǔ)題.2.D【解析】

由題意作出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為連接點和可行域內(nèi)的點的直線斜率的倒數(shù),數(shù)形結(jié)合即可得解.【詳解】由題意作出可行域,如圖,目標(biāo)函數(shù)可表示連接點和可行域內(nèi)的點的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點睛】本題考查了非線性規(guī)劃的應(yīng)用,屬于基礎(chǔ)題.3.B【解析】

設(shè),則,可得,即可得到,進(jìn)而找到對應(yīng)的點所在象限.【詳解】設(shè),則,,,所以復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點為,在第二象限.故選:B【點睛】本題考查復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點所在象限,考查復(fù)數(shù)的模,考查運算能力.4.B【解析】

根據(jù)線段垂直平分線的性質(zhì),結(jié)合三角形中位線定理、圓錐曲線和圓的定義進(jìn)行判斷即可.【詳解】因為線段的垂直平分線與直線相交于點,如下圖所示:所以有,而是中點,連接,故,因此當(dāng)在如下圖所示位置時有,所以有,而是中點,連接,故,因此,綜上所述:有,所以點的軌跡是雙曲線.故選:B【點睛】本題考查了雙曲線的定義,考查了數(shù)學(xué)運算能力和推理論證能力,考查了分類討論思想.5.D【解析】

試題分析:把函數(shù)圖象上各點的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),可得的圖象;再將圖象向右平移個單位,可得的圖象,那么所得圖象的一個對稱中心為,故選D.考點:三角函數(shù)的圖象與性質(zhì).6.D【解析】

由題設(shè)中所給的定義,方程的實數(shù)根叫做函數(shù)的“新駐點”,根據(jù)零點存在定理即可求出的大致范圍【詳解】解:由題意方程的實數(shù)根叫做函數(shù)的“新駐點”,對于函數(shù),由于,,設(shè),該函數(shù)在為增函數(shù),,,在上有零點,故函數(shù)的“新駐點”為,那么故選:.【點睛】本題是一個新定義的題,理解定義,分別建立方程解出存在范圍是解題的關(guān)鍵,本題考查了推理判斷的能力,屬于基礎(chǔ)題..7.B【解析】由題意或4,則,故選B.8.A【解析】

由的解集,可知及,進(jìn)而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因為,所以的解集為,故選:A.【點睛】本題考查一元一次不等式、一元二次不等式的解集,考查學(xué)生的計算求解能力與推理能力,屬于基礎(chǔ)題.9.D【解析】

由正態(tài)分布的性質(zhì),根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結(jié)果.【詳解】由題意,成績X近似服從正態(tài)分布,則正態(tài)分布曲線的對稱軸為,根據(jù)正態(tài)分布曲線的對稱性,求得,所以該市某校有500人中,估計該校數(shù)學(xué)成績不低于110分的人數(shù)為人,故選:.【點睛】本題考查正態(tài)分布的圖象和性質(zhì),考查學(xué)生分析問題的能力,難度容易.10.C【解析】

先化簡,再求.【詳解】因為,又因為,所以,故選:C.【點睛】本題主要考查一元二次不等式的解法、集合的運算,還考查了運算求解能力,屬于基礎(chǔ)題.11.C【解析】

利用誘導(dǎo)公式以及二倍角公式,將化簡為關(guān)于的形式,結(jié)合終邊所在的直線可知的值,從而可求的值.【詳解】因為,且,所以.故選:C.【點睛】本題考查三角函數(shù)中的誘導(dǎo)公式以及三角恒等變換中的二倍角公式,屬于給角求值類型的問題,難度一般.求解值的兩種方法:(1)分別求解出的值,再求出結(jié)果;(2)將變形為,利用的值求出結(jié)果.12.B【解析】

列舉出循環(huán)的每一步,可得出輸出結(jié)果.【詳解】,,不成立,,;不成立,,;不成立,,;成立,輸出的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結(jié)果,一般要將算法的每一步列舉出來,考查計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù),則當(dāng)時,,即.當(dāng)時,顯然成立;當(dāng)時,由,轉(zhuǎn)化為,令,用導(dǎo)數(shù)法求其最大值即可.【詳解】因為,又當(dāng)時,,即.當(dāng)時,顯然成立;當(dāng)時,由等價于,令,,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,,則,又,得,因此的最大值為.故答案為:【點睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.14.【解析】

利用遞推關(guān)系,等比數(shù)列的通項公式即可求得結(jié)果.【詳解】因為,所以,因為是等比數(shù)列,所以數(shù)列的公比為1.又,所以當(dāng)時,有.這說明在已知條件下,可以得到唯一的等比數(shù)列,所以,故答案為:.【點睛】該題考查的是有關(guān)數(shù)列的問題,涉及到的知識點有根據(jù)遞推公式求數(shù)列的通項公式,屬于簡單題目.15.0或6【解析】

計算得到圓心,半徑,根據(jù)得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.【點睛】本題考查了根據(jù)直線和圓的位置關(guān)系求參數(shù),意在考查學(xué)生的計算能力和轉(zhuǎn)化能力。16.4【解析】∵∴根據(jù)正弦定理與余弦定理可得:,即∵∴∵∴故答案為4三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)利用余弦定理可得的長;(2)利用面積得出,結(jié)合正弦定理可得.【詳解】解:(1)由題可知.在中,,所以.(2),則.又,所以.【點睛】本題主要考查利用正弦定理和余弦定理解三角形,已知角較多時一般選用正弦定理,已知邊較多時一般選用余弦定理.18.(1)(2)【解析】

(1)根據(jù)正弦定理,將,化角為邊,即可求出,再利用正弦定理即可求出;(2)根據(jù),選擇,所以當(dāng)?shù)拿娣e取得最大值時,最大,結(jié)合(1)中條件,即可求出最大時,對應(yīng)的的值,再根據(jù)余弦定理求出邊,進(jìn)而得到的周長.【詳解】(1)由,得,即.因為,所以.由,得.(2)因為,所以,當(dāng)且僅當(dāng)時,等號成立.因為的面積.所以當(dāng)時,的面積取得最大值,此時,則,所以的周長為.【點睛】本題主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運算能力.19.(1);(2)見解析.【解析】

(1)當(dāng)時,將所求不等式變形為,然后分、、三段解不等式,綜合可得出原不等式的解集;(2)先由不等式的解集求得實數(shù),可得出,將代數(shù)式變形為,將與相乘,展開后利用基本不等式可求得的最小值,進(jìn)而可證得結(jié)論.【詳解】(1)當(dāng)時,不等式為,且.當(dāng)時,由得,解得,此時;當(dāng)時,由得,該不等式不成立,此時;當(dāng)時,由得,解得,此時.綜上所述,不等式的解集為;(2)由,得,即或,不等式的解集為,故,解得,,,,,當(dāng)且僅當(dāng),時取等號,.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用基本不等式證明不等式,考查推理能力與計算能力,屬于中等題.20.(1).(2)【解析】

(1)利用正弦定理的邊角互化可得,再根據(jù),利用兩角和的正弦公式即可求解.(2)已知,由知,在中,解出即可.【詳解】(1)由正弦定理知由己知,而∴,(2)已知,則由知先求∴∴∴【點睛】本題主要考查了正弦定理解三角形、三角形的性質(zhì)、兩角和的正弦公式,需熟記定理與公式,屬于基礎(chǔ)題.21.(1);(2)【解析】

(1)利用正弦定理邊化角,結(jié)合兩角和差正弦公式可整理求得,進(jìn)而求得和,代入求得結(jié)果;(2)利用正弦定理可將表示為,利用兩角和差正弦公式、輔助角公式將其整理為,根據(jù)正弦型函數(shù)值域的求解方法,結(jié)合的范圍可求得結(jié)果.【詳解】(1)由正弦定理可得:即(2)由(1)知:,,即的取值范圍為【點睛】本題考查解三角形知識的相關(guān)應(yīng)用,涉及到正弦定理邊化角的應(yīng)用、兩角和差正弦公式和輔助角公式的應(yīng)用、與三角函數(shù)值域有關(guān)的取值范圍的求解問題;求解取值范圍的關(guān)鍵是能夠利用正弦定理將邊長的問題轉(zhuǎn)化為三角函數(shù)的問題,進(jìn)而利用正弦型函數(shù)值域的求解方法求得結(jié)果.22.(1),(2)【解析】分析:(1)根據(jù)題的條件,得到對應(yīng)的橢圓的上頂點,即可以求得橢圓中相應(yīng)的參數(shù),結(jié)合橢圓的離心率的大小,求得相應(yīng)的參數(shù),從而求得橢圓的方程;(2)設(shè)出一條直線的方程,與橢圓的方程聯(lián)立,消元,利用求根公式求得對應(yīng)點的坐標(biāo),進(jìn)一步求得向量的坐標(biāo),將S表示為關(guān)于k的函數(shù)關(guān)系,從眼角函數(shù)的角度去求最值,從而求得結(jié)果.詳解:(Ⅰ)依題意得對:,,得:;同理:.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論