泰山科技學院《VI設(shè)計》2023-2024學年第二學期期末試卷_第1頁
泰山科技學院《VI設(shè)計》2023-2024學年第二學期期末試卷_第2頁
泰山科技學院《VI設(shè)計》2023-2024學年第二學期期末試卷_第3頁
泰山科技學院《VI設(shè)計》2023-2024學年第二學期期末試卷_第4頁
泰山科技學院《VI設(shè)計》2023-2024學年第二學期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁泰山科技學院《VI設(shè)計》

2023-2024學年第二學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺中的姿態(tài)估計是確定物體在三維空間中的位置和方向。假設(shè)要估計一個機器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計方法的描述,哪一項是不正確的?()A.基于視覺的姿態(tài)估計可以通過分析物體在圖像中的特征點來計算其姿態(tài)B.可以結(jié)合多個攝像頭的圖像信息,提高姿態(tài)估計的精度和魯棒性C.姿態(tài)估計通常需要先對物體進行建模,然后通過匹配圖像和模型來確定姿態(tài)D.姿態(tài)估計的結(jié)果總是非常準確,不受圖像噪聲、遮擋和物體形狀變化的影響2、計算機視覺中的目標計數(shù)任務(wù),例如統(tǒng)計圖像中物體的數(shù)量。假設(shè)要計算一張果園圖片中蘋果的數(shù)量,以下關(guān)于目標計數(shù)方法的描述,正確的是:()A.基于傳統(tǒng)的圖像分割和對象識別方法可以準確快速地完成目標計數(shù)B.深度學習中的回歸模型不適合用于目標計數(shù)任務(wù)C.目標的大小、形狀和分布對計數(shù)結(jié)果沒有影響D.結(jié)合深度學習的密度估計方法能夠有效地實現(xiàn)目標計數(shù)3、計算機視覺中的特征提取是非常關(guān)鍵的步驟。假設(shè)要從一組圖像中提取具有代表性的特征,以下關(guān)于特征提取方法的描述,正確的是:()A.手工設(shè)計的特征,如SIFT和HOG,在任何情況下都比深度學習自動學習的特征更有效B.深度學習中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學習到圖像的多層次特征,具有很強的表達能力C.特征提取的結(jié)果對后續(xù)的圖像分類和目標檢測任務(wù)沒有影響D.特征提取只需要考慮圖像的局部信息,全局信息不重要4、在計算機視覺的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴重噪聲污染的圖像中的噪聲。以下關(guān)于圖像去噪方法的描述,正確的是:()A.中值濾波能夠有效地去除椒鹽噪聲,但會使圖像變得模糊B.均值濾波在去除噪聲的同時能夠很好地保留圖像的細節(jié)信息C.小波變換去噪方法計算復雜度高,不適合處理大規(guī)模圖像D.所有的圖像去噪方法都能夠完全恢復出原始的無噪圖像5、計算機視覺在虛擬現(xiàn)實(VR)和增強現(xiàn)實(AR)中有著重要的應(yīng)用。假設(shè)要在VR游戲中實現(xiàn)真實的場景交互。以下關(guān)于計算機視覺在VR/AR中的描述,哪一項是不正確的?()A.可以通過對用戶的動作和姿態(tài)進行識別,實現(xiàn)自然的交互操作B.能夠?qū)⑻摂M物體與真實場景進行準確的融合和匹配C.計算機視覺技術(shù)可以提高VR/AR體驗的沉浸感和真實感D.VR/AR中的計算機視覺應(yīng)用不存在任何技術(shù)挑戰(zhàn)和限制6、在計算機視覺的無人駕駛領(lǐng)域,環(huán)境感知是關(guān)鍵環(huán)節(jié)。假設(shè)要讓無人駕駛汽車準確感知周圍的道路狀況、車輛和行人,同時要應(yīng)對惡劣天氣和復雜交通場景。以下哪種環(huán)境感知技術(shù)在這種高要求的應(yīng)用中發(fā)揮著重要作用?()A.激光雷達感知B.攝像頭視覺感知C.毫米波雷達感知D.以上技術(shù)融合感知7、在計算機視覺的目標跟蹤任務(wù)中,需要在視頻序列中持續(xù)跟蹤特定的目標。假設(shè)我們要跟蹤一個在人群中快速移動的人物,以下哪種目標跟蹤算法能夠更好地處理目標的外觀變化和遮擋情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于深度學習的跟蹤算法,如Siamese網(wǎng)絡(luò)D.基于均值漂移的跟蹤算法8、在計算機視覺中,圖像分類是一項基礎(chǔ)任務(wù)。假設(shè)我們有一組包含各種動物的圖像數(shù)據(jù)集,需要訓練一個模型來準確區(qū)分不同的動物類別。在選擇圖像分類模型時,以下哪種模型架構(gòu)通常在處理大規(guī)模圖像數(shù)據(jù)集時表現(xiàn)出色?()A.傳統(tǒng)的機器學習算法,如支持向量機(SVM)B.淺層的卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.深度卷積神經(jīng)網(wǎng)絡(luò),如ResNetD.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)9、計算機視覺中的視覺注意力機制用于聚焦圖像中的重要區(qū)域。以下關(guān)于視覺注意力機制的說法,不正確的是()A.視覺注意力機制可以根據(jù)圖像的特征和任務(wù)需求動態(tài)地選擇關(guān)注的區(qū)域B.注意力機制能夠提高模型的效率和性能,減少對無關(guān)信息的處理C.視覺注意力機制在圖像分類、目標檢測和圖像生成等任務(wù)中得到了廣泛應(yīng)用D.視覺注意力機制的引入會增加模型的復雜度和計算量,降低模型的訓練速度10、在計算機視覺的場景理解任務(wù)中,假設(shè)要理解一個室內(nèi)場景的布局和物體關(guān)系。以下關(guān)于利用深度學習模型的方法,哪一項是不太恰當?shù)模浚ǎ〢.使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)提取圖像特征B.運用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)處理場景的序列信息C.直接使用未經(jīng)訓練的神經(jīng)網(wǎng)絡(luò),期望其自動學習場景理解D.結(jié)合CNN和RNN,構(gòu)建端到端的場景理解模型11、計算機視覺在農(nóng)業(yè)領(lǐng)域的應(yīng)用中,例如對農(nóng)作物的生長監(jiān)測。假設(shè)要通過圖像分析評估農(nóng)作物的健康狀況,以下哪種特征可能對判斷病蟲害的存在較為敏感?()A.農(nóng)作物的顏色和紋理B.農(nóng)作物的高度和形狀C.農(nóng)田的土壤濕度D.農(nóng)田的地理位置12、在計算機視覺的應(yīng)用于農(nóng)業(yè)領(lǐng)域,例如作物監(jiān)測和病蟲害檢測,需要對大量的田間圖像進行分析。假設(shè)我們要檢測農(nóng)作物葉片上的病蟲害癥狀,以下哪種技術(shù)能夠?qū)崿F(xiàn)快速、準確的檢測,并且適應(yīng)不同的生長階段和環(huán)境條件?()A.基于傳統(tǒng)圖像分割和特征提取的方法B.基于深度學習的目標檢測和分類算法,針對病蟲害特征訓練C.基于光譜分析和顏色特征的方法D.基于機器視覺和模式識別的方法13、在計算機視覺中,圖像增強技術(shù)用于改善圖像的質(zhì)量。以下關(guān)于圖像增強的描述,不正確的是()A.圖像增強可以包括對比度增強、銳化、去噪等操作B.圖像增強的目的是使圖像更適合人類視覺觀察或后續(xù)的處理任務(wù)C.過度的圖像增強可能會導致圖像失真或引入噪聲D.圖像增強只對低質(zhì)量的圖像有效果,對于高質(zhì)量的圖像沒有必要進行增強14、圖像分類是計算機視覺的常見應(yīng)用之一。考慮一個需要對大量自然風景圖片進行分類的任務(wù),這些圖片包含了不同的季節(jié)、地理位置和天氣條件。為了提高分類準確率,以下哪種預(yù)處理操作可能最為有效?()A.對圖像進行裁剪和縮放,使其具有統(tǒng)一的尺寸B.對圖像進行直方圖均衡化,增強對比度C.將圖像轉(zhuǎn)換為灰度圖像,減少顏色信息的干擾D.對圖像進行隨機旋轉(zhuǎn)和翻轉(zhuǎn),增加數(shù)據(jù)多樣性15、計算機視覺中的醫(yī)學圖像分析具有重要的臨床應(yīng)用價值。假設(shè)要從一組X光片中檢測出病變區(qū)域,同時要區(qū)分不同類型的病變。以下哪種技術(shù)和方法在醫(yī)學圖像分析中最為常用和有效?()A.形態(tài)學操作B.圖像分割與分類C.特征提取與選擇D.以上方法綜合運用16、當利用計算機視覺進行圖像分類任務(wù),例如區(qū)分不同種類的動物圖片,為了提高模型的泛化能力和防止過擬合,以下哪種技術(shù)可能是有效的?()A.數(shù)據(jù)增強B.正則化C.模型融合D.以上都是17、假設(shè)要開發(fā)一個能夠在低光照條件下清晰拍攝并處理圖像的計算機視覺系統(tǒng),以下哪種圖像增強方法可能有助于改善圖像質(zhì)量?()A.直方圖均衡化B.伽馬校正C.暗通道先驗去霧D.以上都是18、計算機視覺中的場景文本識別旨在從圖像中識別出文字信息。假設(shè)要在一張街景圖像中識別出店鋪招牌上的文字。以下關(guān)于場景文本識別方法的描述,正確的是:()A.基于光學字符識別(OCR)技術(shù)的方法對字體和排版的變化適應(yīng)性強,識別準確率高B.深度學習中的端到端文本識別模型能夠處理彎曲和變形的文本,但對模糊文本效果不佳C.場景文本識別只需要關(guān)注文本的內(nèi)容,不需要考慮文本的位置和上下文信息D.所有的場景文本識別方法都能夠在復雜的自然場景中準確無誤地識別出各種文字19、在計算機視覺的姿態(tài)估計任務(wù)中,假設(shè)要估計一個物體在三維空間中的姿態(tài),例如估計一個機器人手臂的關(guān)節(jié)角度。以下哪種技術(shù)或方法可能被用于實現(xiàn)這一目標?()A.基于立體視覺的方法,通過多個相機的觀測B.利用深度學習模型直接預(yù)測姿態(tài)參數(shù)C.僅根據(jù)物體的外觀形狀進行估計D.隨機猜測物體的姿態(tài)20、在計算機視覺中,圖像分類是一項重要任務(wù)。假設(shè)我們要對大量的動物圖片進行分類,將其分為貓、狗、鳥等類別。以下關(guān)于圖像分類方法的描述,哪一項是不準確的?()A.基于深度學習的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類任務(wù)中表現(xiàn)出色,能夠自動學習圖像的特征B.傳統(tǒng)的機器學習方法如支持向量機(SVM)在處理大規(guī)模圖像數(shù)據(jù)時,性能通常不如深度學習方法C.圖像分類只需要考慮圖像的顏色和形狀等低層次特征,高層語義信息對分類結(jié)果影響不大D.為了提高分類準確率,可以使用數(shù)據(jù)增強技術(shù),如旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪等操作來擴充數(shù)據(jù)集21、計算機視覺中的圖像超分辨率技術(shù)用于提高圖像的分辨率。假設(shè)要將一張低分辨率的圖像恢復成高分辨率圖像,以下關(guān)于圖像超分辨率方法的描述,正確的是:()A.基于插值的圖像超分辨率方法能夠生成清晰逼真的高分辨率圖像B.深度學習中的生成對抗網(wǎng)絡(luò)(GAN)在圖像超分辨率任務(wù)中無法發(fā)揮作用C.圖像超分辨率的效果不受原始低分辨率圖像的質(zhì)量和內(nèi)容的限制D.結(jié)合先驗知識和深度學習的方法可以改善圖像超分辨率的效果22、在計算機視覺的圖像配準任務(wù)中,需要將不同視角或時間拍攝的圖像進行對齊。假設(shè)要將兩張具有一定旋轉(zhuǎn)和平移差異的圖像進行配準,以下關(guān)于圖像配準方法的描述,正確的是:()A.基于特征點匹配的圖像配準方法對圖像的變形和光照變化不敏感B.直接使用像素值的相似性度量就能實現(xiàn)準確的圖像配準C.圖像配準不需要考慮圖像的分辨率和比例尺差異D.深度學習在圖像配準中的應(yīng)用還不成熟,不如傳統(tǒng)方法有效23、計算機視覺在自動駕駛領(lǐng)域有重要應(yīng)用。假設(shè)要開發(fā)一個能夠識別道路標志的系統(tǒng),以下關(guān)于應(yīng)對不同光照條件的策略,哪一項是最為有效的?()A.使用固定的閾值對圖像進行二值化處理B.采用自適應(yīng)的圖像增強算法,根據(jù)光照情況調(diào)整圖像C.忽略光照變化,依靠模型的泛化能力D.只在特定的光照條件下收集訓練數(shù)據(jù)24、圖像增強是為了改善圖像的質(zhì)量和視覺效果。假設(shè)我們有一張由于光照不足而顯得暗淡的圖像,需要對其進行增強以突出細節(jié)。以下哪種圖像增強方法可以有效地提高圖像的對比度,同時避免過度增強導致的噪聲放大?()A.直方圖均衡化B.灰度變換C.銳化濾波D.中值濾波25、當處理低光照條件下拍攝的圖像時,為了增強圖像的亮度和對比度,同時減少噪聲,以下哪種圖像處理方法可能更合適?()A.直方圖均衡化B.伽馬校正C.簡單地增加圖像的整體亮度值D.不進行任何處理,保留低光照效果26、計算機視覺中的工業(yè)檢測任務(wù)需要檢測產(chǎn)品的缺陷和瑕疵。假設(shè)要在生產(chǎn)線上對一批電子產(chǎn)品的外觀進行檢測,要求快速準確地發(fā)現(xiàn)微小的缺陷。以下哪種工業(yè)檢測方法在處理這種高精度要求的任務(wù)時最為適用?()A.機器視覺檢測B.人工目檢C.抽樣檢測D.基于統(tǒng)計的檢測27、當進行圖像的風格遷移任務(wù)時,假設(shè)要將一張照片的風格轉(zhuǎn)換為著名繪畫的風格,同時保留照片的內(nèi)容結(jié)構(gòu)。以下哪種方法在實現(xiàn)這一目標時可能更有效?()A.使用基于卷積神經(jīng)網(wǎng)絡(luò)的風格遷移算法,如Gatys等人提出的方法B.對圖像進行簡單的色彩變換和濾鏡處理C.隨機改變圖像的像素值來模擬風格遷移D.只對圖像的邊緣進行處理,忽略內(nèi)部區(qū)域28、在計算機視覺的應(yīng)用中,人臉識別技術(shù)受到廣泛關(guān)注。假設(shè)一個人臉識別系統(tǒng)正在進行身份驗證,以下關(guān)于人臉識別的描述,正確的是:()A.只依靠面部的幾何形狀信息就能實現(xiàn)準確的人臉識別B.光照變化和面部表情對人臉識別的準確率沒有影響C.結(jié)合深度學習模型和多模態(tài)信息,如紅外圖像,可以提高人臉識別的性能和可靠性D.人臉識別系統(tǒng)不需要考慮數(shù)據(jù)的隱私和安全問題29、計算機視覺中的動作識別是對視頻中的人體動作進行分類和理解。假設(shè)我們要分析一段體育比賽的視頻,識別其中運動員的各種動作,以下哪種方法能夠有效地捕捉動作的時空特征?()A.基于手工特征和分類器的方法B.基于深度學習的時空卷積網(wǎng)絡(luò)C.基于光流和軌跡的方法D.基于隱馬爾可夫模型的方法30、計算機視覺在安防監(jiān)控領(lǐng)域有著廣泛的應(yīng)用。假設(shè)一個商場需要通過監(jiān)控攝像頭進行人員異常行為檢測。以下關(guān)于安防監(jiān)控中的計算機視覺的描述,哪一項是不正確的?()A.可以實時監(jiān)測人群的流動情況,發(fā)現(xiàn)擁堵和異常聚集B.能夠識別人員的打斗、摔倒等異常行為,并及時發(fā)出警報C.計算機視覺系統(tǒng)能夠完全取代人工監(jiān)控,不需要人類保安的參與D.可以與其他安防設(shè)備(如門禁系統(tǒng))聯(lián)動,提高安防水平二、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)通過計算機視覺,對不同類型的竹編作品進行分類。2、(本題5分)對電影特效制作中的綠幕圖像進行精確摳像處理。3、(本題5分)基于深度學習,實現(xiàn)對跳水比賽中運動員入水姿勢的檢測。4、(本題5分)通過計算機視覺,對不同類型的剪紙作品進行分類。5、(本題5分)使用目標跟蹤算法,對馬拉松比賽中的領(lǐng)跑者和跟跑者的策略進行分析。三、簡答題(本大題共5個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論