重慶財(cái)經(jīng)職業(yè)學(xué)院《機(jī)器學(xué)習(xí)及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
重慶財(cái)經(jīng)職業(yè)學(xué)院《機(jī)器學(xué)習(xí)及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
重慶財(cái)經(jīng)職業(yè)學(xué)院《機(jī)器學(xué)習(xí)及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)重慶財(cái)經(jīng)職業(yè)學(xué)院

《機(jī)器學(xué)習(xí)及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、考慮一個(gè)推薦系統(tǒng),需要根據(jù)用戶的歷史行為和興趣為其推薦相關(guān)的商品或內(nèi)容。在構(gòu)建推薦模型時(shí),可以使用基于內(nèi)容的推薦、協(xié)同過濾推薦或混合推薦等方法。如果用戶的歷史行為數(shù)據(jù)較為稀疏,以下哪種推薦方法可能更合適?()A.基于內(nèi)容的推薦,利用商品的屬性和用戶的偏好進(jìn)行推薦B.協(xié)同過濾推薦,基于用戶之間的相似性進(jìn)行推薦C.混合推薦,結(jié)合多種推薦方法的優(yōu)點(diǎn)D.以上方法都不合適,無法進(jìn)行有效推薦2、機(jī)器學(xué)習(xí)中,批量歸一化(BatchNormalization)的主要作用是()A.加快訓(xùn)練速度B.防止過擬合C.提高模型精度D.以上都是3、假設(shè)正在進(jìn)行一個(gè)目標(biāo)檢測(cè)任務(wù),例如在圖像中檢測(cè)出人物和車輛。以下哪種深度學(xué)習(xí)框架在目標(biāo)檢測(cè)中被廣泛應(yīng)用?()A.TensorFlowB.PyTorchC.CaffeD.以上框架都常用于目標(biāo)檢測(cè)4、在機(jī)器學(xué)習(xí)中,模型評(píng)估是非常重要的環(huán)節(jié)。以下關(guān)于模型評(píng)估的說法中,錯(cuò)誤的是:常用的模型評(píng)估指標(biāo)有準(zhǔn)確率、精確率、召回率、F1值等??梢酝ㄟ^交叉驗(yàn)證等方法來評(píng)估模型的性能。那么,下列關(guān)于模型評(píng)估的說法錯(cuò)誤的是()A.準(zhǔn)確率是指模型正確預(yù)測(cè)的樣本數(shù)占總樣本數(shù)的比例B.精確率是指模型預(yù)測(cè)為正類的樣本中真正為正類的比例C.召回率是指真正為正類的樣本中被模型預(yù)測(cè)為正類的比例D.模型的評(píng)估指標(biāo)越高越好,不需要考慮具體的應(yīng)用場(chǎng)景5、在一個(gè)分類問題中,如果數(shù)據(jù)集中存在噪聲和錯(cuò)誤標(biāo)簽,以下哪種模型可能對(duì)這類噪聲具有一定的魯棒性?()A.集成學(xué)習(xí)模型B.深度學(xué)習(xí)模型C.支持向量機(jī)D.決策樹6、在一個(gè)醫(yī)療診斷項(xiàng)目中,我們希望利用機(jī)器學(xué)習(xí)算法來預(yù)測(cè)患者是否患有某種疾病。收集到的數(shù)據(jù)集包含患者的各種生理指標(biāo)、病史等信息。在選擇合適的機(jī)器學(xué)習(xí)算法時(shí),需要考慮多個(gè)因素,如數(shù)據(jù)的規(guī)模、特征的數(shù)量、數(shù)據(jù)的平衡性等。如果數(shù)據(jù)量較大,特征維度較高,且存在一定的噪聲,以下哪種算法可能是最優(yōu)選擇?()A.邏輯回歸算法,簡(jiǎn)單且易于解釋B.決策樹算法,能夠處理非線性關(guān)系C.支持向量機(jī)算法,在小樣本數(shù)據(jù)上表現(xiàn)出色D.隨機(jī)森林算法,對(duì)噪聲和異常值具有較好的容忍性7、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)文本進(jìn)行情感分類,同時(shí)考慮文本的上下文信息和語(yǔ)義關(guān)系。以下哪種模型可以更好地處理這種情況?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)與注意力機(jī)制的結(jié)合B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)與長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)的融合C.預(yù)訓(xùn)練語(yǔ)言模型(如BERT)微調(diào)D.以上模型都有可能8、想象一個(gè)語(yǔ)音識(shí)別的系統(tǒng)開發(fā),需要將輸入的語(yǔ)音轉(zhuǎn)換為文字。語(yǔ)音數(shù)據(jù)具有連續(xù)性、變異性和噪聲等特點(diǎn)。以下哪種模型架構(gòu)和訓(xùn)練方法可能是最有效的?()A.隱馬爾可夫模型(HMM)結(jié)合高斯混合模型(GMM),傳統(tǒng)方法,對(duì)短語(yǔ)音處理較好,但對(duì)復(fù)雜語(yǔ)音的適應(yīng)性有限B.深度神經(jīng)網(wǎng)絡(luò)-隱馬爾可夫模型(DNN-HMM),結(jié)合了DNN的特征學(xué)習(xí)能力和HMM的時(shí)序建模能力,但訓(xùn)練難度較大C.端到端的卷積神經(jīng)網(wǎng)絡(luò)(CNN)語(yǔ)音識(shí)別模型,直接從語(yǔ)音到文字,減少中間步驟,但對(duì)長(zhǎng)語(yǔ)音的處理可能不夠靈活D.基于Transformer架構(gòu)的語(yǔ)音識(shí)別模型,利用自注意力機(jī)制捕捉長(zhǎng)距離依賴,性能優(yōu)秀,但計(jì)算資源需求大9、在一個(gè)股票價(jià)格預(yù)測(cè)的場(chǎng)景中,需要根據(jù)歷史的股票價(jià)格、成交量、公司財(cái)務(wù)指標(biāo)等數(shù)據(jù)來預(yù)測(cè)未來的價(jià)格走勢(shì)。數(shù)據(jù)具有非線性、非平穩(wěn)和高噪聲的特點(diǎn)。以下哪種方法可能是最合適的?()A.傳統(tǒng)的線性回歸方法,簡(jiǎn)單直觀,但無法處理非線性關(guān)系B.支持向量回歸(SVR),對(duì)非線性數(shù)據(jù)有一定處理能力,但對(duì)高噪聲數(shù)據(jù)可能效果不佳C.隨機(jī)森林回歸,能夠處理非線性和高噪聲數(shù)據(jù),但解釋性較差D.基于深度學(xué)習(xí)的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM),對(duì)時(shí)間序列數(shù)據(jù)有較好的建模能力,但容易過擬合10、在一個(gè)語(yǔ)音合成任務(wù)中,需要將輸入的文本轉(zhuǎn)換為自然流暢的語(yǔ)音。以下哪種技術(shù)或模型常用于語(yǔ)音合成?()A.隱馬爾可夫模型(HMM)B.深度神經(jīng)網(wǎng)絡(luò)(DNN)C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),如LSTM或GRUD.以上都是11、在特征工程中,獨(dú)熱編碼(One-HotEncoding)用于()A.處理類別特征B.處理數(shù)值特征C.降維D.以上都不是12、在使用隨機(jī)森林算法進(jìn)行分類任務(wù)時(shí),以下關(guān)于隨機(jī)森林特點(diǎn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.隨機(jī)森林是由多個(gè)決策樹組成的集成模型,通過投票來決定最終的分類結(jié)果B.隨機(jī)森林在訓(xùn)練過程中對(duì)特征進(jìn)行隨機(jī)抽樣,增加了模型的隨機(jī)性和多樣性C.隨機(jī)森林對(duì)于處理高維度數(shù)據(jù)和缺失值具有較好的魯棒性D.隨機(jī)森林的訓(xùn)練速度比單個(gè)決策樹慢,因?yàn)樾枰獦?gòu)建多個(gè)決策樹13、在進(jìn)行深度學(xué)習(xí)模型的訓(xùn)練時(shí),優(yōu)化算法對(duì)模型的收斂速度和性能有重要影響。假設(shè)我們正在訓(xùn)練一個(gè)多層感知機(jī)(MLP)模型。以下關(guān)于優(yōu)化算法的描述,哪一項(xiàng)是不正確的?()A.隨機(jī)梯度下降(SGD)算法是一種常用的優(yōu)化算法,通過不斷調(diào)整模型參數(shù)來最小化損失函數(shù)B.動(dòng)量(Momentum)方法可以加速SGD的收斂,減少震蕩C.Adagrad算法根據(jù)每個(gè)參數(shù)的歷史梯度自適應(yīng)地調(diào)整學(xué)習(xí)率,對(duì)稀疏特征效果較好D.所有的優(yōu)化算法在任何情況下都能使模型快速收斂到最優(yōu)解,不需要根據(jù)模型和數(shù)據(jù)特點(diǎn)進(jìn)行選擇14、在構(gòu)建一個(gè)圖像識(shí)別模型時(shí),需要對(duì)圖像數(shù)據(jù)進(jìn)行預(yù)處理和增強(qiáng)。如果圖像存在光照不均、噪聲和模糊等問題,以下哪種預(yù)處理和增強(qiáng)技術(shù)組合可能最為有效?()A.直方圖均衡化、中值濾波和銳化B.灰度變換、高斯濾波和圖像翻轉(zhuǎn)C.色彩空間轉(zhuǎn)換、均值濾波和圖像縮放D.對(duì)比度拉伸、雙邊濾波和圖像旋轉(zhuǎn)15、在自然語(yǔ)言處理中,詞嵌入(WordEmbedding)的作用是()A.將單詞轉(zhuǎn)換為向量B.進(jìn)行詞性標(biāo)注C.提取文本特征D.以上都是二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)機(jī)器學(xué)習(xí)中如何評(píng)估分類模型的性能?2、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)在工業(yè)生產(chǎn)中的質(zhì)量控制應(yīng)用。3、(本題5分)簡(jiǎn)述在智能家居中,機(jī)器學(xué)習(xí)的應(yīng)用。4、(本題5分)解釋隨機(jī)森林算法的主要思想。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)分析機(jī)器學(xué)習(xí)算法中的深度強(qiáng)化學(xué)習(xí)。論述深度強(qiáng)化學(xué)習(xí)的基本原理和應(yīng)用場(chǎng)景,如機(jī)器人控制、游戲等。探討深度強(qiáng)化學(xué)習(xí)的優(yōu)缺點(diǎn)及改進(jìn)方法。2、(本題5分)論述機(jī)器學(xué)習(xí)在汽車行業(yè)的應(yīng)用,如自動(dòng)駕駛、故障診斷等。分析數(shù)據(jù)安全和模型魯棒性的重要性。3、(本題5分)分析機(jī)器學(xué)習(xí)中的半監(jiān)督聚類算法及其應(yīng)用。半監(jiān)督聚類結(jié)合了部分標(biāo)記數(shù)據(jù)和無標(biāo)記數(shù)據(jù),介紹其算法和應(yīng)用場(chǎng)景。4、(本題5分)論述在機(jī)器學(xué)習(xí)中,如何利用主動(dòng)學(xué)習(xí)(ActiveLearning)減少標(biāo)注工作量。探討主動(dòng)學(xué)習(xí)的策略和選擇樣本的方法。5、(本題5分)論述集成學(xué)習(xí)中的Boosting算法(如Adaboost、GBDT)的思想和工作流

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論