




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖北省名師聯(lián)盟2023年高三下學(xué)期第三次數(shù)學(xué)試題題試題考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在天文學(xué)中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.12.已知,且,則()A. B. C. D.3.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個(gè)單位長度后得到的圖象關(guān)于軸對(duì)稱;③若在上恰有7個(gè)零點(diǎn),則的取值范圍為;④若在上單調(diào)遞增,則的取值范圍為.其中,判斷正確的個(gè)數(shù)為()A.1 B.2 C.3 D.44.劉徽是我國魏晉時(shí)期偉大的數(shù)學(xué)家,他在《九章算術(shù)》中對(duì)勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補(bǔ),各從其類,因就其余不移動(dòng)也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機(jī)取一個(gè)點(diǎn),此點(diǎn)取自朱方的概率為()A. B. C. D.5.設(shè)集合,,若,則的取值范圍是()A. B. C. D.6.第24屆冬奧會(huì)將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運(yùn)會(huì)會(huì)旗中五環(huán)所占面積與單獨(dú)五個(gè)環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實(shí)驗(yàn):通過計(jì)算機(jī)模擬在長為10,寬為6的長方形奧運(yùn)會(huì)旗內(nèi)隨機(jī)取N個(gè)點(diǎn),經(jīng)統(tǒng)計(jì)落入五環(huán)內(nèi)部及其邊界上的點(diǎn)數(shù)為n個(gè),已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.7.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費(fèi)開支占總開支的百分比為()A. B. C. D.8.若單位向量,夾角為,,且,則實(shí)數(shù)()A.-1 B.2 C.0或-1 D.2或-19.已知中,角、所對(duì)的邊分別是,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分必要條件10.?dāng)?shù)列{an},滿足對(duì)任意的n∈N+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數(shù)列{an}的前100項(xiàng)的和S100=()A.132 B.299 C.68 D.9911.已知雙曲線:的焦距為,焦點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()A. B. C. D.12.已知函數(shù),則()A.2 B.3 C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則曲線在點(diǎn)處的切線方程為___________.14.如圖梯形為直角梯形,,圖中陰影部分為曲線與直線圍成的平面圖形,向直角梯形內(nèi)投入一質(zhì)點(diǎn),質(zhì)點(diǎn)落入陰影部分的概率是_____________15.從2、3、5、7、11、13這六個(gè)質(zhì)數(shù)中任取兩個(gè)數(shù),這兩個(gè)數(shù)的和仍是質(zhì)數(shù)的概率是________(結(jié)果用最簡分?jǐn)?shù)表示)16.已知復(fù)數(shù)z是純虛數(shù),則實(shí)數(shù)a=_____,|z|=_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,a,b,c分別是角A,B,C的對(duì)邊,并且.(1)已知_______________,計(jì)算的面積;請(qǐng)①,②,③這三個(gè)條件中任選兩個(gè),將問題(1)補(bǔ)充完整,并作答.注意,只需選擇其中的一種情況作答即可,如果選擇多種情況作答,以第一種情況的解答計(jì)分.(2)求的最大值.18.(12分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,,平面平面,為中點(diǎn).(1)求證:平面;(2)若,求二面角的余弦值大小.19.(12分)已知a,b∈R,設(shè)函數(shù)f(x)=(I)若b=0,求f(x)的單調(diào)區(qū)間:(II)當(dāng)x∈[0,+∞)時(shí),f(x)的最小值為0,求a+5b的最大值.注:20.(12分)已知數(shù)列的前項(xiàng)和為,且滿足,各項(xiàng)均為正數(shù)的等比數(shù)列滿足(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和21.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點(diǎn),使面,說明理由;(2)求二面角的余弦值.22.(10分)已知.(1)當(dāng)時(shí),求不等式的解集;(2)若時(shí)不等式成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
由題意得到關(guān)于的等式,結(jié)合對(duì)數(shù)的運(yùn)算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點(diǎn)睛】本題以天文學(xué)問題為背景,考查考生的數(shù)學(xué)應(yīng)用意識(shí)?信息處理能力?閱讀理解能力以及指數(shù)對(duì)數(shù)運(yùn)算.2.B【解析】分析:首先利用同角三角函數(shù)關(guān)系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關(guān)于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點(diǎn)睛:該題考查的是有關(guān)同角三角函數(shù)關(guān)系式以及倍角公式的應(yīng)用,在解題的過程中,需要對(duì)已知真切求余弦的方法要明確,可以應(yīng)用同角三角函數(shù)關(guān)系式求解,也可以結(jié)合三角函數(shù)的定義式求解.3.B【解析】
對(duì)函數(shù)化簡可得,進(jìn)而結(jié)合三角函數(shù)的最值、周期性、單調(diào)性、零點(diǎn)、對(duì)稱性及平移變換,對(duì)四個(gè)命題逐個(gè)分析,可選出答案.【詳解】因?yàn)?,所以周?對(duì)于①,因?yàn)?,所以,即,故①錯(cuò)誤;對(duì)于②,函數(shù)的圖象向右平移個(gè)單位長度后得到的函數(shù)為,其圖象關(guān)于軸對(duì)稱,則,解得,故對(duì)任意整數(shù),,所以②錯(cuò)誤;對(duì)于③,令,可得,則,因?yàn)椋栽谏系?個(gè)零點(diǎn),且,所以第7個(gè)零點(diǎn),若存在第8個(gè)零點(diǎn),則,所以,即,解得,故③正確;對(duì)于④,因?yàn)?,且,所以,解得,又,所以,故④正確.故選:B.【點(diǎn)睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的平移變換、最值、周期性、單調(diào)性、零點(diǎn)、對(duì)稱性,考查學(xué)生的計(jì)算求解能力與推理能力,屬于中檔題.4.C【解析】
首先明確這是一個(gè)幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因?yàn)檎叫螢橹旆?,其面積為9,五邊形的面積為,所以此點(diǎn)取自朱方的概率為.故選:C【點(diǎn)睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于基礎(chǔ)題.5.C【解析】
由得出,利用集合的包含關(guān)系可得出實(shí)數(shù)的取值范圍.【詳解】,且,,.因此,實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用集合的包含關(guān)系求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.6.B【解析】
根據(jù)比例關(guān)系求得會(huì)旗中五環(huán)所占面積,再計(jì)算比值.【詳解】設(shè)會(huì)旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點(diǎn)睛】本題考查面積型幾何概型的問題求解,屬基礎(chǔ)題.7.A【解析】
由折線圖找出水、電、交通開支占總開支的比例,再計(jì)算出水費(fèi)開支占水、電、交通開支的比例,相乘即可求出水費(fèi)開支占總開支的百分比.【詳解】水費(fèi)開支占總開支的百分比為.故選:A【點(diǎn)睛】本題考查折線圖與柱形圖,屬于基礎(chǔ)題.8.D【解析】
利用向量模的運(yùn)算列方程,結(jié)合向量數(shù)量積的運(yùn)算,求得實(shí)數(shù)的值.【詳解】由于,所以,即,,即,解得或.故選:D【點(diǎn)睛】本小題主要考查向量模的運(yùn)算,考查向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.9.D【解析】
由大邊對(duì)大角定理結(jié)合充分條件和必要條件的定義判斷即可.【詳解】中,角、所對(duì)的邊分別是、,由大邊對(duì)大角定理知“”“”,“”“”.因此,“”是“”的充分必要條件.故選:D.【點(diǎn)睛】本題考查充分條件、必要條件的判斷,考查三角形的性質(zhì)等基礎(chǔ)知識(shí),考查邏輯推理能力,是基礎(chǔ)題.10.B【解析】
由為定值,可得,則是以3為周期的數(shù)列,求出,即求.【詳解】對(duì)任意的,均有為定值,,故,是以3為周期的數(shù)列,故,.故選:.【點(diǎn)睛】本題考查周期數(shù)列求和,屬于中檔題.11.A【解析】
利用雙曲線:的焦點(diǎn)到漸近線的距離為,求出,的關(guān)系式,然后求解雙曲線的漸近線方程.【詳解】雙曲線:的焦點(diǎn)到漸近線的距離為,可得:,可得,,則的漸近線方程為.故選A.【點(diǎn)睛】本題考查雙曲線的簡單性質(zhì)的應(yīng)用,構(gòu)建出的關(guān)系是解題的關(guān)鍵,考查計(jì)算能力,屬于中檔題.12.A【解析】
根據(jù)分段函數(shù)直接計(jì)算得到答案.【詳解】因?yàn)樗?故選:.【點(diǎn)睛】本題考查了分段函數(shù)計(jì)算,意在考查學(xué)生的計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,利用點(diǎn)斜式求切線方程.【詳解】因?yàn)?,所以,又故切線方程為,整理為,故答案為:【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義,切線方程,屬于容易題.14.【解析】
聯(lián)立直線與拋物線方程求出交點(diǎn)坐標(biāo),再利用定積分求出陰影部分的面積,利用梯形的面積公式求出,最后根據(jù)幾何概型的概率公式計(jì)算可得;【詳解】解:聯(lián)立解得或,即,,,,,故答案為:【點(diǎn)睛】本題考查幾何概型的概率公式的應(yīng)用以及利用微積分基本定理求曲邊形的面積,屬于中檔題.15.【解析】
依據(jù)古典概型的計(jì)算公式,分別求“任取兩個(gè)數(shù)”和“任取兩個(gè)數(shù),和是質(zhì)數(shù)”的事件數(shù),計(jì)算即可?!驹斀狻俊叭稳蓚€(gè)數(shù)”的事件數(shù)為,“任取兩個(gè)數(shù),和是質(zhì)數(shù)”的事件有(2,3),(2,5),(2,11)共3個(gè),所以任取兩個(gè)數(shù),這兩個(gè)數(shù)的和仍是質(zhì)數(shù)的概率是。【點(diǎn)睛】本題主要考查古典概型的概率求法。16.11【解析】
根據(jù)復(fù)數(shù)運(yùn)算法則計(jì)算復(fù)數(shù)z,根據(jù)復(fù)數(shù)的概念和模長公式計(jì)算得解.【詳解】復(fù)數(shù)z,∵復(fù)數(shù)z是純虛數(shù),∴,解得a=1,∴z=i,∴|z|=1,故答案為:1,1.【點(diǎn)睛】此題考查復(fù)數(shù)的概念和模長計(jì)算,根據(jù)復(fù)數(shù)是純虛數(shù)建立方程求解,計(jì)算模長,關(guān)鍵在于熟練掌握復(fù)數(shù)的運(yùn)算法則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)1【解析】
(1)選②,③.可得,結(jié)合,求得.即可;若選①,②.由可得由,求得.即可;若選①,③,可得,又,可得,即可;(2)化簡,根據(jù)角的范圍求最值即可.【詳解】(1)若選②,③.,,,,又,.的面積.若選①,②.由可得,,,又,.的面積.若選①,③,,又,,可得,的面積.(2),當(dāng)時(shí),有最大值1.【點(diǎn)睛】本題考查了正余弦定理,三角三角恒等變形,考查了計(jì)算能力,屬于中檔題.18.(1)見解析;(2)【解析】
(1)設(shè)中點(diǎn)為,連接、,首先通過條件得出,加,可得,進(jìn)而可得平面,再加上平面,可得平面平面,則平面;(2)設(shè)中點(diǎn)為,連接、,可得平面,加上平面,則可如圖建立直角坐標(biāo)系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【詳解】(1)證明:設(shè)中點(diǎn)為,連接、,為等邊三角形,,,,,,即,,,平面,平面,平面,為的中位線,,平面,平面,平面,、為平面內(nèi)二相交直線,平面平面,平面DMN,平面;(2)設(shè)中點(diǎn)為,連接、為等邊三角形,是等腰三角形,且頂角,,、、共線,,,,,平面平面.平面平面平面,交線為,平面平面.設(shè),則在中,由余弦定理,得:又,,,,,為中點(diǎn),,建立直角坐標(biāo)系(如圖),則,,,.,,設(shè)平面的法向量為,則,,取,則,,平面的法向量為,,二面角為銳角,二面角的余弦值大小為.【點(diǎn)睛】本題考查面面平行證明線面平行,考查向量法求二面角的大小,考查學(xué)生計(jì)算能力和空間想象能力,是中檔題.19.(I)詳見解析;(II)2【解析】
(I)求導(dǎo)得到f'(x)=ex-a,討論a≤0(II)f12=e-12a-5【詳解】(I)f(x)=ex-ax當(dāng)a≤0時(shí),f'(x)=e當(dāng)a>0時(shí),f'(x)=ex-a=0,x=lna當(dāng)x∈lna,+∞時(shí),綜上所述:a≤0時(shí),fx在R上單調(diào)遞增;a>0時(shí),fx在-∞,ln(II)f(x)=ex-ax-bf12=現(xiàn)在證明存在a,b,a+5b=2e取a=3e4,b=f'(x)=ex-a-故當(dāng)x∈0,+∞上時(shí),x2+1f'x在x∈0,+∞上單調(diào)遞增,故fx在0,12上單調(diào)遞減,在1綜上所述:a+5b的最大值為【點(diǎn)睛】本題考查了函數(shù)單調(diào)性,函數(shù)的最值問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20.(1);(2)【解析】
(1)由化為,利用數(shù)列的通項(xiàng)公式和前n項(xiàng)和的關(guān)系,得到是首項(xiàng)為,公差為的等差數(shù)列求解.(2)由(1)得到,再利用錯(cuò)位相減法求解.【詳解】(1)可以化為,,,,又時(shí),數(shù)列從開始成等差數(shù)列,,代入得是首項(xiàng)為,公差為的等差數(shù)列,,.(2)由(1)得,,,兩式相減得,,.【點(diǎn)睛】本題主要考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和的關(guān)系和錯(cuò)位相減法求和,還考查了運(yùn)算求解的能力,屬于中檔題.21.(1)存在;詳見解析(2)【解析】
(1)利用面面平行的性質(zhì)定理可得,為上靠近點(diǎn)的三等分點(diǎn),中點(diǎn),證明平面平面即得;(2)過作交于,可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32/T 3841-2020水利工程建筑信息模型設(shè)計(jì)規(guī)范
- DB32/T 3761.1-2020新型冠狀病毒肺炎疫情防控技術(shù)規(guī)范第1部分:醫(yī)療機(jī)構(gòu)
- DB32/T 3678-2019電梯統(tǒng)一應(yīng)急救援標(biāo)識(shí)
- DB32/T 3567-2019內(nèi)河船舶大氣污染物排放清單編制技術(shù)指南
- DB31/T 949.2-2016文化旅游空間服務(wù)質(zhì)量要求第2部分:文化創(chuàng)意產(chǎn)業(yè)園區(qū)
- DB31/T 939-2015冶金渣混凝土空心隔墻板應(yīng)用技術(shù)規(guī)程
- DB31/T 680.2-2012城市公共用水定額及其計(jì)算方法第2部分:單位內(nèi)部生活
- DB31/T 214-2023節(jié)能產(chǎn)品評(píng)審方法和程序
- DB31/T 1342-2021乘用車單位產(chǎn)品能源消耗限額
- DB31/T 1301-2021罪犯暫離監(jiān)所管理規(guī)范
- 液化石油氣汽車槽車安全管理規(guī)定
- 預(yù)防野生菌中毒主題班會(huì)集合6篇
- esd術(shù)患者的護(hù)理查房
- 安全管理應(yīng)急預(yù)案之應(yīng)急預(yù)案編制格式和要求
- 國家開放大學(xué)期末機(jī)考人文英語1
- 鉆孔壓水試驗(yàn)記錄表
- 環(huán)保餐具的設(shè)計(jì)
- 結(jié)核菌素(PPD、EC)皮膚試驗(yàn)報(bào)告單
- 電工學(xué)(第六版)中職PPT完整全套教學(xué)課件
- 產(chǎn)業(yè)命題賽道命題解決對(duì)策參考模板
- 砼塔施工方案
評(píng)論
0/150
提交評(píng)論