




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖北省宜昌市部分示范高中教學(xué)協(xié)作體2023屆高三下學(xué)期第五次月考(期末)數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.點是單位圓上不同的三點,線段與線段交于圓內(nèi)一點M,若,則的最小值為()A. B. C. D.2.若集合,,則=()A. B. C. D.3.若復(fù)數(shù)z滿足,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.5.已知,則的大小關(guān)系是()A. B. C. D.6.過拋物線()的焦點且傾斜角為的直線交拋物線于兩點.,且在第一象限,則()A. B. C. D.7.已知復(fù)數(shù)z滿足(其中i為虛數(shù)單位),則復(fù)數(shù)z的虛部是()A. B.1 C. D.i8.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,9.如圖,在中,點為線段上靠近點的三等分點,點為線段上靠近點的三等分點,則()A. B. C. D.10.若等差數(shù)列的前項和為,且,,則的值為().A.21 B.63 C.13 D.8411.某幾何體的三視圖如圖所示,其中正視圖是邊長為4的正三角形,俯視圖是由邊長為4的正三角形和一個半圓構(gòu)成,則該幾何體的體積為()A. B. C. D.12.已知定義在上的函數(shù)滿足,且當(dāng)時,,則方程的最小實根的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數(shù)列,則的離心率為__________.14.已知函數(shù),若關(guān)于的方程恰有四個不同的解,則實數(shù)的取值范圍是______.15.平面向量與的夾角為,,,則__________.16.若x,y滿足,則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)記數(shù)列的前項和為,已知成等差數(shù)列.(1)證明:數(shù)列是等比數(shù)列,并求的通項公式;(2)記數(shù)列的前項和為,求.18.(12分)設(shè)為實數(shù),已知函數(shù),.(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間:(2)設(shè)為實數(shù),若不等式對任意的及任意的恒成立,求的取值范圍;(3)若函數(shù)(,)有兩個相異的零點,求的取值范圍.19.(12分)如圖,點為圓:上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.(1)求曲線的方程;(2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,且,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.20.(12分)在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為;直線l的參數(shù)方程為(t為參數(shù)).直線l與曲線C分別交于M,N兩點.(1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;(2)若點P的極坐標(biāo)為,,求的值.21.(12分)已知函數(shù).(1)當(dāng)時,解關(guān)于x的不等式;(2)當(dāng)時,若對任意實數(shù),都成立,求實數(shù)的取值范圍.22.(10分)過點作傾斜角為的直線與曲線(為參數(shù))相交于M、N兩點.(1)寫出曲線C的一般方程;(2)求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當(dāng)且僅當(dāng)時等號成立),,的最小值為,故選:D.【點睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查基本不等式的應(yīng)用,屬于中檔題.2.C【解析】試題分析:化簡集合故選C.考點:集合的運算.3.A【解析】
化簡復(fù)數(shù),求得,得到復(fù)數(shù)在復(fù)平面對應(yīng)點的坐標(biāo),即可求解.【詳解】由題意,復(fù)數(shù)z滿足,可得,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)點的坐標(biāo)為位于第一象限故選:A.【點睛】本題主要考查了復(fù)數(shù)的運算,以及復(fù)數(shù)的幾何表示方法,其中解答中熟記復(fù)數(shù)的運算法則,結(jié)合復(fù)數(shù)的表示方法求解是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.4.A【解析】
利用平面向量的概念、平面向量的加法、減法、數(shù)乘運算的幾何意義,便可解決問題.【詳解】解:.故選:A【點睛】本題以正五角星為載體,考查平面向量的概念及運算法則等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.5.B【解析】
利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對數(shù)運算性質(zhì)比較a,c進(jìn)而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對稱,則,即,又,所以,.故選:B.【點睛】本題主要考查對數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.6.C【解析】
作,;,由題意,由二倍角公式即得解.【詳解】由題意,,準(zhǔn)線:,作,;,設(shè),故,,.故選:C【點睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.7.A【解析】
由虛數(shù)單位i的運算性質(zhì)可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點睛】本題考查了虛數(shù)單位i的運算性質(zhì)、復(fù)數(shù)的概念,屬于基礎(chǔ)題.8.D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標(biāo)函數(shù)z=x+2y經(jīng)過C點時,函數(shù)取得最小值,由解得C(2,1),目標(biāo)函數(shù)的最小值為:4目標(biāo)函數(shù)的范圍是[4,+∞).故選D.9.B【解析】
,將,代入化簡即可.【詳解】.故選:B.【點睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運算、數(shù)乘運算,考查學(xué)生的運算能力,是一道中檔題.10.B【解析】
由已知結(jié)合等差數(shù)列的通項公式及求和公式可求,,然后結(jié)合等差數(shù)列的求和公式即可求解.【詳解】解:因為,,所以,解可得,,,則.故選:B.【點睛】本題主要考查等差數(shù)列的通項公式及求和公式的簡單應(yīng)用,屬于基礎(chǔ)題.11.A【解析】由題意得到該幾何體是一個組合體,前半部分是一個高為底面是邊長為4的等邊三角形的三棱錐,后半部分是一個底面半徑為2的半個圓錐,體積為故答案為A.點睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.12.C【解析】
先確定解析式求出的函數(shù)值,然后判斷出方程的最小實根的范圍結(jié)合此時的,通過計算即可得到答案.【詳解】當(dāng)時,,所以,故當(dāng)時,,所以,而,所以,又當(dāng)時,的極大值為1,所以當(dāng)時,的極大值為,設(shè)方程的最小實根為,,則,即,此時令,得,所以最小實根為411.故選:C.【點睛】本題考查函數(shù)與方程的根的最小值問題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識,本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設(shè),,,根據(jù)勾股定理得出,而由橢圓的定義得出的周長為,有,便可求出和的關(guān)系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長,,成等差數(shù)列,設(shè),,,而,根據(jù)勾股定理有:,解得:,由橢圓定義知:的周長為,有,,在直角中,由勾股定理,,即:,∴離心率.故答案為:.【點睛】本題考查橢圓的離心率以及橢圓的定義的應(yīng)用,考查計算能力.14.【解析】
設(shè),判斷為偶函數(shù),考慮x>0時,的解析式和零點個數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,作函數(shù)大致圖象,即可得到的范圍.【詳解】設(shè),則在是偶函數(shù),當(dāng)時,,由得,記,,,故函數(shù)在增,而,所以在減,在增,,當(dāng)時,,當(dāng)時,,因此的圖象為因此實數(shù)的取值范圍是.【點睛】本題主要考查了函數(shù)的零點的個數(shù)問題,涉及構(gòu)造函數(shù),函數(shù)的奇偶性,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,考查了數(shù)形結(jié)合思想方法,以及化簡運算能力和推理能力,屬于難題.15.【解析】
由平面向量模的計算公式,直接計算即可.【詳解】因為平面向量與的夾角為,所以,所以;故答案為【點睛】本題主要考查平面向量模的計算,只需先求出向量的數(shù)量積,進(jìn)而即可求出結(jié)果,屬于基礎(chǔ)題型.16.5【解析】
先作出可行域,再做直線,平移,找到使直線在y軸上截距最小的點,代入即得?!驹斀狻孔鞒霾坏仁浇M表示的平面區(qū)域,如圖,令,則,作出直線,平移直線,由圖可得,當(dāng)直線經(jīng)過C點時,直線在y軸上的截距最小,由,可得,因此的最小值為.故答案為:4【點睛】本題考查不含參數(shù)的線性規(guī)劃問題,是基礎(chǔ)題。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析,;(2)【解析】
(1)由成等差數(shù)列,可得到,再結(jié)合公式,消去,得到,再給等式兩邊同時加1,整理可證明結(jié)果;(2)將(1)得到的代入中化簡后再裂項,然后求其前項和.【詳解】(1)由成等差數(shù)列,則,即,①當(dāng)時,,又,②由①②可得:,即,時,.所以是以3為首項,3為公比的等比數(shù)列,,所以.(2),所以.【點睛】此題考查了數(shù)列遞推式,等比數(shù)列的證明,裂列相消求和,考查了學(xué)生分析問題和解決問題的能力,屬于中檔題.18.(1)函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)(3)【解析】
(1)據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系即可求出;(2)分離參數(shù),可得對任意的及任意的恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值即可求出的范圍;(3)先求導(dǎo),再分類討論,根據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性以及最值得關(guān)系即可求出的范圍【詳解】解:(1)當(dāng)時,因為,當(dāng)時,;當(dāng)時,.所以函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)由,得,由于,所以對任意的及任意的恒成立,由于,所以,所以對任意的恒成立,設(shè),,則,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以,所以.(3)由,得,其中.①若時,則,所以函數(shù)在上單調(diào)遞增,所以函數(shù)至多有一個零點,不合題意;②若時,令,得.由第(2)小題,知:當(dāng)時,,所以,所以,所以當(dāng)時,函數(shù)的值域為.所以,存在,使得,即,①且當(dāng)時,,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.因為函數(shù)有兩個零點,,所以.②設(shè),,則,所以函數(shù)在單調(diào)遞增,由于,所以當(dāng)時,.所以,②式中的,又由①式,得.由第(1)小題可知,當(dāng)時,函數(shù)在上單調(diào)遞減,所以,即.當(dāng)時,(?。┯捎?所以得,又因為,且函數(shù)在上單調(diào)遞減,函數(shù)的圖象在上不間斷,所以函數(shù)在上恰有一個零點;(ⅱ)由于,令,設(shè),,由于時,,,所以設(shè),即.由①式,得,當(dāng)時,,且,同理可得函數(shù)在上也恰有一個零點.綜上,.【點睛】本題考查含參數(shù)的導(dǎo)數(shù)的單調(diào)性,利用導(dǎo)數(shù)求不等式恒成立問題,以及考查函數(shù)零點問題,考查學(xué)生的計算能力,是綜合性較強的題.19.(1)(2)不存在;詳見解析【解析】
(1)設(shè),,,通過,即為的中點,轉(zhuǎn)化求解,點的軌跡的方程.(2)設(shè)直線的方程為,先根據(jù),可得,①,再根據(jù)韋達(dá)定理,點在橢圓上可得,②,將①代入②可得,該方程無解,問題得以解決【詳解】(1)設(shè),,則,,由題意知,所以為中點,由中點坐標(biāo)公式得,即,又點在圓:上,故滿足,得.曲線的方程.(2)由題意知直線的斜率存在且不為零,設(shè)直線的方程為,因為,故,即①,聯(lián)立,消去得:,設(shè),,,,,因為四邊形為平行四邊形,故,點在橢圓上,故,整理得②,將①代入②,得,該方程無解,故這樣的直線不存在.【點睛】本題考查點的軌跡方程的求法、滿足條件的點是否存在的判斷與直線方程的求法,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.20.(1),;(2)2.【解析】
(1)由得,求出曲線的直角坐標(biāo)方程.由直線的參數(shù)方程消去參數(shù),即求直線的普通方程;(2)將直線的參數(shù)方程化為標(biāo)準(zhǔn)式(為參數(shù)),代入曲線的直角坐標(biāo)方程,韋達(dá)定理得,點在直線上,則,即可求出的值.【詳解】(1)由可得,即,即,曲線的直角坐標(biāo)方程為,由直線的參數(shù)方程(t為參數(shù)),消去得,即直線的普通方程為.(Ⅱ)點的直角坐標(biāo)為,則點在直線上.將直線的參數(shù)方程化為標(biāo)準(zhǔn)式(為參數(shù)),代入曲線的直角坐標(biāo)方程,整理得,直線與曲線交于兩點,,即.設(shè)點所對應(yīng)的參數(shù)分別為,由韋達(dá)定理可得,.點在直線上,,.【點睛】本題考查參數(shù)方程、極坐標(biāo)方程和普通方程的互化及應(yīng)用,屬于中檔題.21.(1)(2)【解析】
(1)當(dāng)時,利用含有一個絕對值不等式的解法,求得不等式的解集.(2)對分成和兩類,利用零點分段法去絕對值,將表示為分段函數(shù)的形式,求得的最小值,進(jìn)而求得的取值范圍.【詳解】(1)當(dāng)時,由得由得解:,得∴當(dāng)時,關(guān)于的不等式的解集為(2)①當(dāng)時,,所以在上是減函數(shù),在是增函數(shù),所以,由題設(shè)得,解得.②當(dāng)時,同理求得.綜上所述,的取值范圍為.【點睛】本小題主要考查含有一個絕對值不等式的求法,考查利用零點分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院放射科火災(zāi)應(yīng)急預(yù)案(3篇)
- 火災(zāi)專項環(huán)境應(yīng)急預(yù)案(3篇)
- 音頻處理與編程基礎(chǔ)試題及答案
- 2025年企業(yè)戰(zhàn)略創(chuàng)新試題及答案
- 虛擬化技術(shù)應(yīng)用試題及答案
- 計算機考試常見問題與試題
- 農(nóng)村土地流轉(zhuǎn)的法律問題試題及答案
- 法律文本與社會現(xiàn)實的對應(yīng)關(guān)系試題及答案
- 軟件架構(gòu)設(shè)計的關(guān)鍵試題及答案
- 2025年公司戰(zhàn)略變化與風(fēng)險管理試題及答案
- 車輛超速考試試題及答案
- 成人患者營養(yǎng)不良診斷與應(yīng)用指南(2025版)解讀課件
- 2025年一級注冊建筑師歷年真題答案
- 十五五時期經(jīng)濟(jì)社會發(fā)展座談會十五五如何謀篇布局
- 初中電與磁試題及答案
- 浙江開放大學(xué)2025年《行政復(fù)議法》形考作業(yè)1答案
- 國家開放大學(xué)《西方經(jīng)濟(jì)學(xué)(本)》章節(jié)測試參考答案
- 湖南省炎德英才名校聯(lián)合體2025屆高考考前仿真聯(lián)考二英語+答案
- 重慶地理會考試卷題及答案
- 福建省三明市2025年普通高中高三畢業(yè)班五月質(zhì)量檢測地理試卷及答案(三明四檢)
- 2024年四川省天全縣事業(yè)單位公開招聘醫(yī)療衛(wèi)生崗筆試題帶答案
評論
0/150
提交評論