




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆北京市人大學(xué)附屬中學(xué)高三(下)4月調(diào)研數(shù)學(xué)試題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的一條漸近線與直線垂直,則雙曲線的離心率等于()A. B. C. D.2.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于3.在中,點(diǎn)D是線段BC上任意一點(diǎn),,,則()A. B.-2 C. D.24.已知向量,且,則等于()A.4 B.3 C.2 D.15.某學(xué)校組織學(xué)生參加英語(yǔ)測(cè)試,成績(jī)的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為,若低于60分的人數(shù)是18人,則該班的學(xué)生人數(shù)是()A.45 B.50 C.55 D.606.已知函數(shù),集合,,則()A. B.C. D.7.偶函數(shù)關(guān)于點(diǎn)對(duì)稱,當(dāng)時(shí),,求()A. B. C. D.8.過拋物線的焦點(diǎn)F作兩條互相垂直的弦AB,CD,設(shè)P為拋物線上的一動(dòng)點(diǎn),,若,則的最小值是()A.1 B.2 C.3 D.49.已知水平放置的△ABC是按“斜二測(cè)畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.10.設(shè)i是虛數(shù)單位,若復(fù)數(shù)()是純虛數(shù),則m的值為()A. B. C.1 D.311.甲、乙兩名學(xué)生的六次數(shù)學(xué)測(cè)驗(yàn)成績(jī)(百分制)的莖葉圖如圖所示.①甲同學(xué)成績(jī)的中位數(shù)大于乙同學(xué)成績(jī)的中位數(shù);②甲同學(xué)的平均分比乙同學(xué)的平均分高;③甲同學(xué)的平均分比乙同學(xué)的平均分低;④甲同學(xué)成績(jī)的方差小于乙同學(xué)成績(jī)的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④12.設(shè)全集,集合,.則集合等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是等比數(shù)列,若,,且∥,則______.14.在數(shù)列中,,,曲線在點(diǎn)處的切線經(jīng)過點(diǎn),下列四個(gè)結(jié)論:①;②;③;④數(shù)列是等比數(shù)列;其中所有正確結(jié)論的編號(hào)是______.15.已知是偶函數(shù),則的最小值為___________.16.設(shè)平面向量與的夾角為,且,,則的取值范圍為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐,側(cè)面是邊長(zhǎng)為2的正三角形,且與底面垂直,底面是的菱形,為棱上的動(dòng)點(diǎn),且.(I)求證:為直角三角形;(II)試確定的值,使得二面角的平面角余弦值為.18.(12分)設(shè)函數(shù)()的最小值為.(1)求的值;(2)若,,為正實(shí)數(shù),且,證明:.19.(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的最大值為,且,求的最小值.20.(12分)如圖,三棱柱的所有棱長(zhǎng)均相等,在底面上的投影在棱上,且∥平面(Ⅰ)證明:平面平面;(Ⅱ)求直線與平面所成角的余弦值.21.(12分)設(shè)首項(xiàng)為1的正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列的前n項(xiàng)和為Tn,且,其中p為常數(shù).(1)求p的值;(2)求證:數(shù)列{an}為等比數(shù)列;(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“x=1,且y=2”.22.(10分)中國(guó)古代數(shù)學(xué)經(jīng)典《數(shù)書九章》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱為“陽(yáng)馬”,將四個(gè)面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽(yáng)馬中,底面ABCD是矩形.平面,,,以的中點(diǎn)O為球心,AC為直徑的球面交PD于M(異于點(diǎn)D),交PC于N(異于點(diǎn)C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個(gè)面的直角(只需寫出結(jié)論);若不是,請(qǐng)說明理由;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】由于直線的斜率k,所以一條漸近線的斜率為,即,所以,選B.2.C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應(yīng)選答案C.3.A【解析】
設(shè),用表示出,求出的值即可得出答案.【詳解】設(shè)由,,.故選:A【點(diǎn)睛】本題考查了向量加法、減法以及數(shù)乘運(yùn)算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎(chǔ)題.4.D【解析】
由已知結(jié)合向量垂直的坐標(biāo)表示即可求解.【詳解】因?yàn)椋?,,則.故選:.【點(diǎn)睛】本題主要考查了向量垂直的坐標(biāo)表示,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.5.D【解析】
根據(jù)頻率分布直方圖中頻率=小矩形的高×組距計(jì)算成績(jī)低于60分的頻率,再根據(jù)樣本容量求出班級(jí)人數(shù).【詳解】根據(jù)頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學(xué)生人數(shù))是60(人).故選:D.【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用問題,也考查了頻率的應(yīng)用問題,屬于基礎(chǔ)題6.C【解析】
分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.【點(diǎn)睛】本題主要考查了集合的基本運(yùn)算,難度容易.7.D【解析】
推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計(jì)算即可.【詳解】由于偶函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當(dāng)時(shí),,則.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的對(duì)稱性和奇偶性求函數(shù)值,推導(dǎo)出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.8.C【解析】
設(shè)直線AB的方程為,代入得:,由根與系數(shù)的關(guān)系得,,從而得到,同理可得,再利用求得的值,當(dāng)Q,P,M三點(diǎn)共線時(shí),即可得答案.【詳解】根據(jù)題意,可知拋物線的焦點(diǎn)為,則直線AB的斜率存在且不為0,設(shè)直線AB的方程為,代入得:.由根與系數(shù)的關(guān)系得,,所以.又直線CD的方程為,同理,所以,所以.故.過點(diǎn)P作PM垂直于準(zhǔn)線,M為垂足,則由拋物線的定義可得.所以,當(dāng)Q,P,M三點(diǎn)共線時(shí),等號(hào)成立.故選:C.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系、焦半徑公式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意取最值的條件.9.A【解析】
先根據(jù)已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A【點(diǎn)睛】本題主要考查斜二測(cè)畫法的定義和三角形面積的計(jì)算,意在考察學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.10.A【解析】
根據(jù)復(fù)數(shù)除法運(yùn)算化簡(jiǎn),結(jié)合純虛數(shù)定義即可求得m的值.【詳解】由復(fù)數(shù)的除法運(yùn)算化簡(jiǎn)可得,因?yàn)槭羌兲摂?shù),所以,∴,故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的概念和除法運(yùn)算,屬于基礎(chǔ)題.11.A【解析】
由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據(jù)數(shù)據(jù)集中程度判斷④.【詳解】由莖葉圖可得甲同學(xué)成績(jī)的中位數(shù)為,乙同學(xué)成績(jī)的中位數(shù)為,故①錯(cuò)誤;,,則,故②錯(cuò)誤,③正確;顯然甲同學(xué)的成績(jī)更集中,即波動(dòng)性更小,所以方差更小,故④正確,故選:A【點(diǎn)睛】本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù).12.A【解析】
先算出集合,再與集合B求交集即可.【詳解】因?yàn)榛?所以,又因?yàn)?所以.故選:A.【點(diǎn)睛】本題考查集合間的基本運(yùn)算,涉及到解一元二次不等式、指數(shù)不等式,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】若,,且∥,則,由是等比數(shù)列,可知公比為..故答案為.14.①③④【解析】
先利用導(dǎo)數(shù)求得曲線在點(diǎn)處的切線方程,由此求得與的遞推關(guān)系式,進(jìn)而證得數(shù)列是等比數(shù)列,由此判斷出四個(gè)結(jié)論中正確的結(jié)論編號(hào).【詳解】∵,∴曲線在點(diǎn)處的切線方程為,則.∵,∴,則是首項(xiàng)為1,公比為的等比數(shù)列,從而,,.故所有正確結(jié)論的編號(hào)是①③④.故答案為:①③④【點(diǎn)睛】本小題主要考查曲線的切線方程的求法,考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查等比數(shù)列通項(xiàng)公式和前項(xiàng)和公式,屬于基礎(chǔ)題.15.2【解析】
由偶函數(shù)性質(zhì)可得,解得,再結(jié)合基本不等式即可求解【詳解】令得,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào).故答案為:2【點(diǎn)睛】考查函數(shù)的奇偶性、基本不等式,屬于基礎(chǔ)題16.【解析】
根據(jù)已知條件計(jì)算出,結(jié)合得出,利用基本不等式可得出的取值范圍,利用平面向量的數(shù)量積公式可求得的取值范圍,進(jìn)而可得出的取值范圍.【詳解】,,,由得,,由基本不等式可得,,,,,因此,的取值范圍為.故答案為:.【點(diǎn)睛】本題考查利用向量的模求解平面向量夾角的取值范圍,考查計(jì)算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(II).【解析】
試題分析:(1)取中點(diǎn),連結(jié),以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能證明為直角三角形;(2)設(shè),由,得,求出平面的法向量和平面的法向量,,根據(jù)空間向量夾角余弦公式能求出結(jié)果.試題解析:(I)取中點(diǎn),連結(jié),依題意可知均為正三角形,所以,又平面平面,所以平面,又平面,所以,因?yàn)?所以,即,從而為直角三角形.(II)法一:由(I)可知,又平面平面,平面平面,平面,所以平面.以為原點(diǎn),建立空間直角坐標(biāo)系如圖所示,則,由可得點(diǎn)的坐標(biāo)所以,設(shè)平面的法向量為,則,即解得,令,得,顯然平面的一個(gè)法向量為,依題意,解得或(舍去),所以,當(dāng)時(shí),二面角的余弦值為.法二:由(I)可知平面,所以,所以為二面角的平面角,即,在中,,所以,由正弦定理可得,即解得,又,所以,所以,當(dāng)時(shí),二面角的余弦值為.18.(1)(2)證明見解析【解析】
(1)分類討論,去絕對(duì)值求出函數(shù)的解析式,根據(jù)一次函數(shù)的性質(zhì),得出的單調(diào)性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化簡(jiǎn)后利用基本不等式求出的最小值,即可證出.【詳解】(1)解:當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.所以當(dāng)時(shí),取最小值.(2)證明:由(1)可知.要證明:,即證,因?yàn)?,,為正?shí)數(shù),所以.當(dāng)且僅當(dāng),即,,時(shí)取等號(hào),所以.【點(diǎn)睛】本題考查絕對(duì)值不等式和基本不等式的應(yīng)用,還運(yùn)用“乘1法”和分類討論思想,屬于中檔題.19.(1)(2)【解析】
(1)化簡(jiǎn)得到,分類解不等式得到答案.(2)的最大值,,利用均值不等式計(jì)算得到答案.【詳解】(1)因?yàn)椋驶蚧蚪獾没?,故不等式的解集?(2)畫出函數(shù)圖像,根據(jù)圖像可知的最大值.因?yàn)椋?,?dāng)且僅當(dāng)時(shí),等號(hào)成立,故的最小值是3.【點(diǎn)睛】本題考查了解不等式,均值不等式求最值,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.20.(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)連接交于點(diǎn),連接,由于平面,得出,根據(jù)線線位置關(guān)系得出,利用線面垂直的判定和性質(zhì)得出,結(jié)合條件以及面面垂直的判定,即可證出平面平面;(Ⅱ)根據(jù)題意,建立空間直角坐標(biāo)系,利用空間向量法分別求出和平面的法向量,利用空間向量線面角公式,即可求出直線與平面所成角的余弦值.【詳解】解:(Ⅰ)證明:連接交于點(diǎn),連接,則平面平面,平面,,為的中點(diǎn),為的中點(diǎn),平面,,平面,平面,平面平面(Ⅱ)建立如圖所示空間直角坐標(biāo)系,設(shè)則,,,,,設(shè)平面的法向量為,則,取得,設(shè)直線與平面所成角為,直線與平面所成角的余弦值為.【點(diǎn)睛】本題考查面面垂直的判定以及利用空間向量法求線面角的余弦值,考查空間想象能力和推理能力.21.(1)p=2;(2)見解析(3)見解析【解析】
(1)取n=1時(shí),由得p=0或2,計(jì)算排除p=0的情況得到答案.(2),則,相減得到3an+1=4﹣Sn+1﹣Sn,再化簡(jiǎn)得到,得到證明.(3)分別證明充分性和必要性,假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),計(jì)算化簡(jiǎn)得2x﹣2y﹣2=1,設(shè)k=x﹣(y﹣2),計(jì)算得到k=1,得到答案.【詳解】(1)n=1時(shí),由得p=0或2,若p=0時(shí),,當(dāng)n=2時(shí),,解得a2=0或,而an>0,所以p=0不符合題意,故p=2;(2)當(dāng)p=2時(shí),①,則②,②﹣①并化簡(jiǎn)得3an+1=4﹣Sn+1﹣Sn③,則3an+2=4﹣Sn+2﹣Sn+1④,④﹣③得(n∈N*),又因?yàn)?,所以?shù)列{an}是等比數(shù)列,且;(3)充分性:若x=1,y=2,由知an,2xan+1,2yan+2依次為,,,滿足,即an,2xan+1,2yan+2成等差數(shù)列;必要性:假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),又,所以,化簡(jiǎn)得2x﹣2y﹣2=1,顯然x>y﹣2,設(shè)k=x﹣(y﹣2),因?yàn)閤、y均為整數(shù),所以當(dāng)k≥2時(shí),2x﹣2y﹣2>1或2x﹣2y﹣2<1,故當(dāng)k=1,且當(dāng)x=1,且y﹣2=0時(shí)上式成立,即證.【點(diǎn)睛】本題考查了根據(jù)數(shù)列求參數(shù),證明等比數(shù)列,充要條件,意在考查學(xué)生的綜合應(yīng)用能力.22.(1)證明見解析,是,,,,;(2)【解析】
(1)根據(jù)是球的直徑,則,又平面,得到,再由線面垂直的判定定理得到平面,,進(jìn)而得到,再利用線面垂直的判定定理得到平面.(2)以A為原點(diǎn),,,所在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 漁業(yè)資源養(yǎng)護(hù)與開發(fā)技術(shù)平臺(tái)研發(fā)應(yīng)用考核試卷
- 電氣安裝船舶與海洋工程考核試卷
- 石材行業(yè)的人力資源管理考核試卷
- 天然氣行業(yè)人才培養(yǎng)與技能培訓(xùn)考核試卷
- 畜牧機(jī)械設(shè)計(jì)原理考核試卷
- 纖維素纖維的電磁波吸收特性研究考核試卷
- 電工儀表的模塊化維修考核試卷
- 江蘇省淮安市田家炳中學(xué)2024-2025學(xué)年第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題高三語(yǔ)文試題含解析
- 吉林省白城市洮北區(qū)第一中學(xué)2025屆高中畢業(yè)班第一次診斷性檢測(cè)試題歷史試題文試題含解析
- 四川體育職業(yè)學(xué)院《論文寫作與學(xué)術(shù)道德》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年7月1日實(shí)施新版醫(yī)療器械采購(gòu)、收貨、驗(yàn)收、貯存、銷售、出庫(kù)、運(yùn)輸和售后服務(wù)工作程序
- JGJ107-2016鋼筋機(jī)械連接技術(shù)規(guī)程
- 初中生物人教七年級(jí)上冊(cè)生物體的結(jié)構(gòu)層次第一節(jié) 細(xì)胞通過分裂產(chǎn)生新細(xì)胞 導(dǎo)學(xué)案
- 政府供應(yīng)商分類表
- 甘肅省煙花爆竹經(jīng)營(yíng)許可實(shí)施標(biāo)準(zhǔn)細(xì)則
- 【精品課件】藥用高分子材料學(xué)
- 要素式起訴狀(離婚糾紛)
- 急性腎盂腎炎護(hù)理查房
- DB22T 5118-2022 建筑工程資料管理標(biāo)準(zhǔn)
- 小學(xué)二下必讀書目《神筆馬良》閱讀測(cè)試題及答案
- 登臨詩(shī)鑒賞(課堂PPT)
評(píng)論
0/150
提交評(píng)論