




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
/2024-2025學年六年級數學上冊典型例題系列第七單元專練篇·05:濃度問題拓展題型一、填空題。1.將5g糖完全溶解在95g的水中,糖與水的比是();糖水的濃度是()。2.玻璃杯中裝了含蜂蜜5%的100克蜂蜜水,每次向杯中加入不超過8克含蜂蜜50%的蜂蜜水,則最少加()次之后,才能使玻璃杯中的蜂蜜水濃度能達到30%。(假設玻璃杯足夠大)3.王老師將一杯純牛奶先喝掉半杯后,再用純凈水加滿,拌勻后又喝掉半杯,再用純凈水加滿,此時杯中牛奶的濃度是()。4.把20毫升酸梅原液放入100毫升的水中制成酸梅湯,酸梅原液和酸梅湯的比是()∶();再放入30毫升酸梅原液,原液與酸梅湯的比為()∶();要使酸梅湯的濃度達到60%,還應加原液()毫升。5.A瓶蜂蜜水的濃度為8%,B瓶蜂蜜水的濃度為5%,混合后濃度為6.2%?,F取出A瓶蜂蜜水的以及B瓶蜂蜜水的進行混合,則混合蜂蜜水的濃度為()。6.甲桶中裝有10升純酒精,乙桶中裝有6升純酒精與8升水的混合物,丙桶中裝有10升水,現在先從甲桶向乙桶倒入一定量的酒精,并攪拌均勻;然后從乙桶向丙桶倒入一定量的液體,并攪拌均勻;接著從丙桶向甲桶倒入一定量的液體,最后各桶中的酒精濃度分別為:甲桶75%,乙桶50%,丙桶25%,那么此時丙桶中有混合液體()升。7.有A、B兩瓶不同濃度的鹽水,小明從兩瓶中各取1升混合在一起,得到一瓶濃度為36%的鹽水,他又將這份鹽水與2升A瓶鹽水混合在一起,最終濃度為32%,那么B瓶鹽水的濃度是()。8.有三個一樣大的桶,一個裝有濃度60%的酒精100升,一個裝有水100升,還有一個桶是空的,現在要配制成濃度36%的酒精,只有5升和3升的空桶各一個可以作為量具(無其它度量刻度)。如果每一種量具至多用四次,那么最多能配制成36%的酒精()升。9.在40克水中放入10克糖,這時糖占糖水的()%;再加入()克水,糖水濃度降為10%。10.一容器內有濃度為30%的糖水,若再加入30千克水與6千克糖,則糖水的濃度變?yōu)?5%。問原來糖水中含糖()千克。二、解答題。11.若干鹽水加入一定量的水后,鹽水濃度降到3%,再加入同樣多的水后濃度降到2%,問,如果再加入同樣多的水后濃度降到多少?12.有酒精濃度30%的酒精溶液若干克,加入一定量水后,濃度變?yōu)?4%,如果再加入同樣多的水,濃度會變成多少?13.A、B兩只裝滿硫酸溶液的容器,A容器中裝有濃度為8%的硫酸溶液150千克,B容器中裝有濃度為40%的硫酸溶液100千克,各取多少千克分別放入對方容器中,才能使這兩個容器中的硫酸溶液的濃度一樣?14.有40克食鹽溶液,若加入200克水,它的濃度減少10%,這種溶液原有多少克水,原來的濃度是多少?15.有40克食鹽溶液,若加入200克水,它的濃度減少,這種溶液原有多少克水,原來的濃度是多少?16.甲瓶中有純酒精11升,乙瓶中有水15升,丙瓶中有20%的酒精10升,第一次將甲中的部分酒精倒入乙瓶中,第二次將乙瓶中的部分酒精倒入丙瓶中,第三次將丙瓶中的部分酒精倒入甲瓶中。此時甲,乙,丙三瓶中的酒精濃度分別為46%、25%、23%。求甲、乙、丙三瓶中現在各有多少升酒精?17.把濃度20%的、30%、45%的三種酒精混合在一起,得到濃度為35%的酒精溶液45升。已知濃度20%的酒精溶液用量是濃度為30%的酒精溶液用量的3倍。原來每種濃度的酒精溶液各用多少升?18.有濃度為10%的酒精溶液50千克,要配制成濃度為30%的酒精溶液100千克,需加入水和純酒精各多少千克?/2024-2025學年六年級數學上冊典型例題系列第七單元專練篇·05:濃度問題拓展題型一、填空題。1.將5g糖完全溶解在95g的水中,糖與水的比是();糖水的濃度是()?!敬鸢浮?∶195%【分析】按照比的意義,5g糖∶95g水,化成最簡整數比即可。糖水的濃度等于糖除以糖水,再乘100%,即可得解。【詳解】5g∶95g=1∶195÷(5+95)×100%=5÷100×100%=5%【點睛】此題的解題關鍵是理解比和百分數的意義,求糖水的濃度實際是在求糖占糖水的百分比。2.玻璃杯中裝了含蜂蜜5%的100克蜂蜜水,每次向杯中加入不超過8克含蜂蜜50%的蜂蜜水,則最少加()次之后,才能使玻璃杯中的蜂蜜水濃度能達到30%。(假設玻璃杯足夠大)【答案】16【分析】要想加入最少次,則每次都盡可能加入8克含蜂蜜50%的蜂蜜水,根據蜂蜜水×濃度=蜂蜜,可知原來有(100×5%)克蜂蜜,設加入x次蜂蜜水,則一共加入了8x克蜂蜜水,8x克蜂蜜水含有(8x×50%)克蜂蜜;現在的濃度是30%,一共有(100+8x)克蜂蜜水,含[(100+8x)×30%]克蜂蜜,據此可列方程為:100×5%+8x×50%=(100+8x)×30%,然后求出x值,然后根據進一法取整數即可?!驹斀狻拷猓涸O加x次之后,玻璃杯中的蜂蜜水濃度剛好達到30%,則100×5%+8x×50%=(100+8x)×30%5+4x=30+2.4x4x-2.4x=30-51.6x=25x=25÷1.6x=15.625解得x=15.625,所以至少加16次,才能使玻璃杯中的蜂蜜水濃度達到30%?!军c睛】本題考查了濃度問題,可通過列方程解決問題,掌握相應的公式是解答本題的關鍵。3.王老師將一杯純牛奶先喝掉半杯后,再用純凈水加滿,拌勻后又喝掉半杯,再用純凈水加滿,此時杯中牛奶的濃度是()。【答案】25%【分析】假設一杯有4份,則原來一杯的純牛奶有4份,喝掉半杯,也就是喝掉2份純牛奶,剩下2份純牛奶;再用純凈水加滿,也就是假如2份水,現在杯子里面有2份水和2份純牛奶,拌勻后又喝掉半杯,則喝掉了1份水和1份純牛奶,剩下1份水和1份純牛奶,再用純凈水加滿,也就是加入2份水,現在杯子里面有3份水和1份純牛奶,根據求一個數是另一個數的百分之幾,用一個數除以另一個數再乘100%,則用1÷4×100%即可求出純牛奶占杯子的百分之幾,也就是杯中牛奶的濃度?!驹斀狻考僭O一杯有4份,根據分析可知,現在杯子里面有3份水和1份純牛奶,1÷4×100%=25%此時杯中牛奶的濃度是25%。4.把20毫升酸梅原液放入100毫升的水中制成酸梅湯,酸梅原液和酸梅湯的比是()∶();再放入30毫升酸梅原液,原液與酸梅湯的比為()∶();要使酸梅湯的濃度達到60%,還應加原液()毫升。【答案】1613100【分析】根據題意,20毫升酸梅原液放入100毫升的水中,酸梅湯的質量=酸梅原液+水的質量,用20+100=120(克),求酸梅原液和酸梅湯的比就是20∶120,再化簡即可;再放入30毫升酸梅原液,就是把酸梅原液加30,變成20+30=50(毫升),說明酸梅湯變成120+30=150(毫升),原液與酸梅湯的比就是50∶150=1∶3;根據酸梅原液÷酸梅湯=60%這個關系式列方程解答。設加原液x毫升,那么加入的原液就變成(50+x)毫升,那么酸梅湯就用(x+150)毫升,列出的方程就是(50+x)÷(150+x)=60%,解方程即可?!驹斀狻?0+100=120(毫升)20∶120=1∶620+30=50(毫升)120+30=150(毫升)50∶150=1∶3解:設還應加原液x毫升。(50+x)÷(150+x)=60%(50+x)=(150+x)×60%50+x=0.6x+90x-0.6x==90-500.4x=40x=40÷0.4x=100所以,把20毫升酸梅原液放入100毫升的水中制成酸梅湯,酸梅原液和酸梅湯的比是1∶6;再放入30毫升酸梅原液,原液與酸梅湯的比為1∶3;要使酸梅湯的濃度達到60%,還應加原液100毫升?!军c睛】本題考查了比,明確比的意義,掌握比的化簡方法是解題的關鍵。5.A瓶蜂蜜水的濃度為8%,B瓶蜂蜜水的濃度為5%,混合后濃度為6.2%。現取出A瓶蜂蜜水的以及B瓶蜂蜜水的進行混合,則混合蜂蜜水的濃度為()。【答案】6.25%【分析】由題意,A、B兩種濃度的蜂蜜水混合后濃度為6.2%,運用十字交叉法,8%-6.2%=1.8%,6.2%-5%=1.2%,可得甲乙質量比為1.2∶1.8,即可得出結論?!驹斀狻坑深}意,運用十字交叉法,可得:即甲乙質量比為1.2∶1.81.2×=0.3,1.8×=0.3所以混合后的濃度則為(8%+5%)÷2=6.5%【點睛】本題考查濃度問題,考查十字交叉法的運用,正確運用十字交叉法是解題的關鍵。6.甲桶中裝有10升純酒精,乙桶中裝有6升純酒精與8升水的混合物,丙桶中裝有10升水,現在先從甲桶向乙桶倒入一定量的酒精,并攪拌均勻;然后從乙桶向丙桶倒入一定量的液體,并攪拌均勻;接著從丙桶向甲桶倒入一定量的液體,最后各桶中的酒精濃度分別為:甲桶75%,乙桶50%,丙桶25%,那么此時丙桶中有混合液體()升?!敬鸢浮?6【分析】①原先乙桶的水比酒精多2升,由于第一次混合后乙桶中的濃度為50%,也就是說酒精與水的質量相等,因此從甲桶中倒入的酒精就是2升;②第二次混合,從乙桶中倒入若干濃度為50%的混合液體到丙里面,與10升水混合,得到的混合液體濃度為25%。對于倒入的那部分混合液體,酒精的量不變,濃度變成一半說明混合液體總量增加,新倒入的混合液體的量與水的量相等,均為10升。③第三次混合,甲桶內還剩8升酒精,與一部分濃度為25%的混合液體混合,最終濃度為75%,因此,從丙桶向甲桶倒入混合液體4升。那么,最后丙桶中有混合液體(10+10-4)升。【詳解】①第一次混合,乙桶中的濃度為50%,則從甲桶中倒入的酒精的質量是:8-6=2(升)②第二次混合,是一部分濃度為50%的混合液體與10升水混合,最終濃度為25%,因此向乙桶倒入混合液體10升;③此時甲桶中尚有酒精:10-2=8(升)第三次混合,從丙中倒入若干濃度為25%的混合液體后,濃度變?yōu)?5%;原來酒精與水的比是25%∶(1-25%)=0.25∶0.75=1∶3現在酒精與水的比是75%∶(1-75%)=0.75∶0.25=3∶1=9∶3由于水的量沒變,所以酒精的量增加了:9-1=8(份)從丙中倒入混合液體的酒精是:8÷8=1(升)則倒入的混合液體是:1÷25%=4(升)丙中剩下混合液體:10+10-4=16(升)【點睛】在多次混合中,要抓住每次混合中的不變量,有時是水不變,有時是酒精不變;通過不變量,利用比的關系,解決問題。7.有A、B兩瓶不同濃度的鹽水,小明從兩瓶中各取1升混合在一起,得到一瓶濃度為36%的鹽水,他又將這份鹽水與2升A瓶鹽水混合在一起,最終濃度為32%,那么B瓶鹽水的濃度是()?!敬鸢浮?4%【分析】從兩瓶中各取1升混合在一起鹽水的濃度為36%,則兩種鹽水濃度的平均值為36%,把B瓶鹽水的濃度設為未知數,用含有字母的式子表示出A瓶鹽水的濃度,等量關系式:A、B兩瓶鹽水各1升混合在一起時鹽的質量+2升A瓶鹽水中鹽的質量=濃度為32%鹽水中鹽的質量,據此解答?!驹斀狻拷猓涸OB瓶鹽水的濃度為x,則A瓶鹽水的濃度為(36%×2-x)。(1+1)×36%+2×(36%×2-x)=(1+1+2)×32%2×36%+2×(0.72-x)=4×32%2×36%+2×0.72-2x=4×32%0.72+1.44-2x=1.282.16-2x=1.282x=2.16-1.282x=0.88x=0.88÷2x=0.44x=44%所以,B瓶鹽水的濃度是44%?!军c睛】掌握溶質、溶液、濃度之間的關系,并找出等量關系式是解答題目的關鍵。8.有三個一樣大的桶,一個裝有濃度60%的酒精100升,一個裝有水100升,還有一個桶是空的,現在要配制成濃度36%的酒精,只有5升和3升的空桶各一個可以作為量具(無其它度量刻度)。如果每一種量具至多用四次,那么最多能配制成36%的酒精()升?!敬鸢浮?0【分析】把配成的酒精中純酒精的量設為1,那么需要60%的酒精的量是:1÷60%=,配成的酒精的量是1÷36%=,加水的量是:-=;那么60%的酒精的量與水的量的比是:∶=3∶2;就是說每3升的60%的酒精和2升水才能配成5升36%的酒精;先用3升的空桶量出3升60%的酒精,倒入5升的桶中,然后在這個桶中加滿水就是5升36%的酒精,再倒入空桶,如此4次即可?!驹斀狻拷猓涸O配成的酒精中純酒精的量為1。那么需要60%的酒精的量是:1÷60%=配成的酒精的量是1÷36%=加水的量是:-=∶=3∶2每3升的60%的酒精和2升水才能配成5升36%的酒精;所以可以如下操作:1、將60%的酒精先倒入3升的空桶;2、將3升60%的酒精倒入5升的空桶;3、向5升內裝3升60%酒精的桶里加水至滿;4、5升的桶里此時是36%的酒精,將其倒入空桶;5、如此反復,因為每一種量具最多用4次,故最多能配制成36%的酒精是5×4=20(升)?!军c睛】本題關鍵是找出酒精和水的比例,然后根據提供的容器進行求解。9.在40克水中放入10克糖,這時糖占糖水的()%;再加入()克水,糖水濃度降為10%?!敬鸢浮?050【分析】糖占糖水的百分率=糖的質量÷糖水的質量×100%;加入水后糖的質量不變,根據“糖水的質量=糖的質量÷含糖率”求出糖水的總質量,加入水的質量=現在糖水的質量-原來糖水的質量;據此解答?!驹斀狻?0÷(40+10)×100%=10÷50×100%=0.2×100%=20%10÷10%-(40+10)=10÷10%-50=100-50=50(克)【點睛】抓住題中濃度下降前后糖的質量不變,并靈活運用含糖率的計算公式是解答題目的關鍵。10.一容器內有濃度為30%的糖水,若再加入30千克水與6千克糖,則糖水的濃度變?yōu)?5%。問原來糖水中含糖()千克?!敬鸢浮?8【分析】根據糖水的質量×濃度=糖的質量,得出等量關系:原來糖水的質量×30%+加入的糖的質量=(原來糖水的質量+加入水的質量+加入糖的質量)×25%,設原來糖水的質量為千克,據此列出方程,并解方程,求出原來糖水的質量,再乘30%,即是原來糖水中糖的質量?!驹斀狻拷猓涸O原來糖水的質量為千克。30%+6=(+30+6)×25%0.3+6=(+36)×0.250.3+6=0.25+90.3-0.25=9-60.05=3=3÷0.05=60原來糖水中含糖:60×30%=60×0.3=18(千克)【點睛】本題考查濃度問題,從題目中找到等量關系,并根據等量關系列出方程是解題的關鍵。二、解答題。11.若干鹽水加入一定量的水后,鹽水濃度降到3%,再加入同樣多的水后濃度降到2%,問,如果再加入同樣多的水后濃度降到多少?【答案】1.5%【分析】假設3%的鹽水有100克,根據百分數乘法的意義,用100×3%即可求出鹽的質量,鹽的質量不變,再加入同樣多的水后濃度降到2%,則把2%的鹽水質量看作單位“1”,根據百分數除法的意義,用100×3%÷2%即可求出2%的鹽水質量,然后用2%的鹽水質量減去3%的鹽水質量,即可求出加入的水的質量,如果再加入同樣多的水,則現在的質量等于2%的鹽水質量加上同樣多的水的質量,最后根據求一個數是另一個數的百分之幾,用一個數除以另一個數,則用鹽的質量除以現在的鹽水質量,即可求出現在的鹽水濃度?!驹斀狻考僭O3%的鹽水有100克,鹽的質量:100×3%=3(克)2%的鹽水質量:3÷2%=150(克)加入的水的質量:150-100=50(克)現在的質量:150+50=200(克)現在鹽水濃度:3÷200=1.5%答:如果再加入同樣多的水后濃度降到1.5%?!军c睛】本題考查了濃度問題,可用假設法解決問題,關鍵是將3%的溶液看作原溶液。12.有酒精濃度30%的酒精溶液若干克,加入一定量水后,濃度變?yōu)?4%,如果再加入同樣多的水,濃度會變成多少?【答案】20%【分析】假設酒精濃度30%的酒精溶液有100克,根據百分數乘法的意義,用100×30%即可求出酒精的質量,酒精的質量不變,再加入一定量的水后濃度降到24%,則把酒精濃度24%的酒精溶液質量看作單位“1”,根據百分數除法的意義,用100×30%÷24%即可求出酒精濃度24%的酒精溶液質量,然后用酒精濃度24%的酒精溶液質量減去酒精濃度30%的酒精溶液質量,即可求出加入的水的質量。如果再加入同樣多的水,則現在的酒精溶液質量等于酒精濃度24%的酒精溶液質量加上同樣多的水的質量,最后根據求一個數是另一個數的百分之幾,用一個數除以另一個數再乘100%,則用酒精的質量除以現在的酒精溶液質量再乘100%,即可求出現在的酒精溶液濃度?!驹斀狻考僭O原來共有酒精溶液100克。酒精:100×30%=30(克)酒精濃度24%的酒精溶液質量:30÷24%=125(克)加水:125-100=25(克)濃度:30÷(125+25)×100%=30÷150×100%=0.2×100%=20%答:濃度會變?yōu)?0%。【點睛】本題考查了濃度問題,可用假設法解決問題,找到相應的數量關系以及相關公式是解答本題的關鍵。13.A、B兩只裝滿硫酸溶液的容器,A容器中裝有濃度為8%的硫酸溶液150千克,B容器中裝有濃度為40%的硫酸溶液100千克,各取多少千克分別放入對方容器中,才能使這兩個容器中的硫酸溶液的濃度一樣?【答案】60千克【分析】原來A容器和B容器的溶液比是150∶100,也就是3∶2;根據題意可知,題目的操作相當于將兩種溶液混合以后,再重新分成150千克和100千克,此時這每種溶液中,含有原來A容器和B容器的溶液比是3∶2;根據分數和比的關系,現在150千克中原來A容器的溶液占150千克的,根據分數乘法的意義,用150×即可求出現在150千克含有原來A容器的溶液的質量,然后用150千克減去含有的A容器的溶液的質量,即可求出含有B容器的溶液的質量,也就是取了多少千克B容器中的溶液放入到A容器的溶液中?!驹斀狻?50∶100=(150÷50)∶(100÷50)=3∶2150×=150×=90(千克)150-90=60(千克)答:各取60千克分別放入對方容器中,才能使這兩個容器中的硫酸溶液的濃度一樣?!军c睛】本題考查了濃度問題,明確濃度一樣以后,無論溶液怎么分配,原來兩種溶液的比不變。14.有40克食鹽溶液,若加入200克水,它的濃度減少10%,這種溶液原有多少克水,原來的濃度是多少?【答案】35.2克;12%【分析】加水后濃度和溶液總量都發(fā)生了變化,但溶質是不變的。根據公式溶質=濃度×溶液,加水前的溶質就等于原來的濃度乘40克食鹽溶液,加水后或者稀釋后的濃度就用原來的濃度減去10%,溶液就是40克食鹽溶液加上200克的水。假如設原來的濃度為x,稀釋后的濃度就為x-10%,再根據原溶液的溶質與稀釋溶液的溶質相等可列出方程。解出x,最后用原來的溶液乘1減去原溶液濃度的差,就是原有水的克數。據此解答即可?!驹斀狻拷猓涸O原來的濃度為,則稀釋后的濃度為。
=35.2(克)答:這種溶液原有35.2克水,原來的濃度是12%?!军c睛】本題考查的是關于溶質=濃度×溶液公式的運用,解這類題的關鍵在于抓住不變量,本題不變的是稀釋前后的溶質。15.有40克食鹽溶液,若加入200克水,它的濃度減少,這種溶液原有多少克水,原來的濃度是多少?【答案】解:設原來的濃度為,則稀釋后的濃度為。(克)【解析】略16.甲瓶中有純酒精11升,乙瓶中有水15升,丙瓶中有20%的酒精10升,第一次將甲中的部分酒精倒入乙瓶中,第二次將乙瓶中的部分酒精倒入丙瓶中,第三次將丙瓶中的部分酒精倒入甲瓶中。此時甲,乙,丙三瓶中的酒精濃度分別為46%、25%、23%。求甲、乙、丙三瓶中現在各有多少升酒精?【答案】甲瓶中有20.1升酒精,乙瓶中有5升酒精,丙瓶中有10.9升酒精?!痉治觥扛鶕}意,第一次將甲中的部分酒精倒入乙瓶中,第二次將乙瓶中的部分酒精倒入丙瓶中,第三次將丙瓶中的部分酒精倒入甲瓶中,此時甲,乙,丙三瓶中的酒精濃度分別為46%、25%、23%,可知第一次將甲中的部分酒精倒入乙瓶中,乙瓶的酒精濃度為25%,設甲瓶倒入乙瓶x升酒精,列方程:x÷(x+15)=25%,解得x=5;即可算出甲瓶倒入乙瓶的體積;第二次將乙瓶中的部分酒精倒入丙瓶,丙瓶的酒精濃度為23%,設乙瓶倒入丙瓶y升酒精,列方程:(25%y+10×20%)÷(y+10)=23%,解得y=15;即可算出乙瓶倒入丙瓶的體積;第三次將丙瓶中的部分酒精倒入甲瓶中,甲瓶的酒精濃度為46%,設丙瓶倒入甲瓶z升酒精,列方程:(11-5+23%z)÷(11-5+z)=46%,解得z≈14.1,即可算出丙瓶倒入甲瓶的體積。根據以上分析可求解?!驹斀狻康谝淮螌⒓字械牟糠志凭谷胍移恐校移康木凭珴舛葹?5%,設甲瓶倒入乙瓶x升酒精,列方程:x÷(x+15)=25%,解得x=5;則第一次倒完后,甲瓶剩:11-5=6(升),乙瓶有酒精:15+5=20(升);第二次將乙瓶中的部分酒精倒入丙瓶,丙瓶的酒精濃度為23%,設乙瓶倒入丙瓶y升酒精,列方程:(25%y+10×20%)÷(y+10)=23%,解得y=15;則第二次倒完后,乙瓶剩:20-15=5(升),丙瓶有酒精:15+10=25(升);第三次將丙瓶中的部分酒精倒入甲瓶中,甲瓶的酒精濃度為46%,設丙瓶倒入甲瓶z升酒精,列方程:(11-5+23%z)÷(11-5+z)=46%,解得z≈14.1,則第三次倒完后,丙瓶剩:25-14.1=10.9(升)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蒼山和平城協(xié)議書
- 動漫角色COSPLAY餐廳行業(yè)跨境出海項目商業(yè)計劃書
- 抽水房轉讓協(xié)議書
- 高溫隔熱耐火磚行業(yè)深度調研及發(fā)展項目商業(yè)計劃書
- 高精度軸套生產企業(yè)制定與實施新質生產力項目商業(yè)計劃書
- 高效移栽機械行業(yè)深度調研及發(fā)展項目商業(yè)計劃書
- 高端機器人企業(yè)制定與實施新質生產力項目商業(yè)計劃書
- 高速冷凍離心機企業(yè)制定與實施新質生產力項目商業(yè)計劃書
- 購物出行專車行業(yè)跨境出海項目商業(yè)計劃書
- 金融科技教育平臺企業(yè)制定與實施新質生產力項目商業(yè)計劃書
- 四川省2025屆高三第二次聯合測評-生物試卷+答案
- 企業(yè)消防管理安全制度
- 2025年中國樺木工藝膠合板市場調查研究報告
- 廣西南寧市新民中學2025屆七下生物期末監(jiān)測試題含解析
- 《創(chuàng)傷性休克》課件
- 跨境電商勞務合同協(xié)議
- GB/T 45620-2025農資商品電子代碼編碼規(guī)則
- 2025年熔化焊接與熱切割作業(yè)中考試練習題(100題)附答案
- 2025中小學學校教材教輔征訂管理工作方案
- 天域全國名校協(xié)作體2024-2025學年高三下學期聯考英語試題(解析版)
- 2025年中考時事政治測試題及答案
評論
0/150
提交評論