2024屆吉林省汪清縣達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷含解析_第1頁
2024屆吉林省汪清縣達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷含解析_第2頁
2024屆吉林省汪清縣達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷含解析_第3頁
2024屆吉林省汪清縣達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷含解析_第4頁
2024屆吉林省汪清縣達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆吉林省汪清縣達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,M是△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,且AB=10,BC=15,MN=3,則AC的長是()A.12 B.14 C.16 D.182.如圖,在直角坐標(biāo)系中,等腰直角△ABO的O點是坐標(biāo)原點,A的坐標(biāo)是(﹣4,0),直角頂點B在第二象限,等腰直角△BCD的C點在y軸上移動,我們發(fā)現(xiàn)直角頂點D點隨之在一條直線上移動,這條直線的解析式是()A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+23.點M(1,2)關(guān)于y軸對稱點的坐標(biāo)為()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)4.一組數(shù)據(jù)是4,x,5,10,11共五個數(shù),其平均數(shù)為7,則這組數(shù)據(jù)的眾數(shù)是()A.4 B.5 C.10 D.115.下列運算正確的是()A.a(chǎn)6÷a3=a2 B.3a2?2a=6a3 C.(3a)2=3a2 D.2x2﹣x2=16.如圖,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位線,延長DE交△ABC的外角∠ACM的平分線于點F,則線段DF的長為()A.7 B.8 C.9 D.107.如圖,CD是⊙O的弦,O是圓心,把⊙O的劣弧沿著CD對折,A是對折后劣弧上的一點,∠CAD=100°,則∠B的度數(shù)是()A.100° B.80° C.60° D.50°8.?dāng)?shù)據(jù)4,8,4,6,3的眾數(shù)和平均數(shù)分別是()A.5,4 B.8,5 C.6,5 D.4,59.如圖,在邊長為3的等邊三角形ABC中,過點C垂直于BC的直線交∠ABC的平分線于點P,則點P到邊AB所在直線的距離為()A.33 B.32 C.10.如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是A.55° B.60° C.65° D.70°二、填空題(本大題共6個小題,每小題3分,共18分)11.一只螞蟻從數(shù)軸上一點A出發(fā),爬了7個單位長度到了+1,則點A所表示的數(shù)是_____12.一個布袋里裝有10個只有顏色不同的球,這10個球中有m個紅球,從布袋中摸出一個球,記下顏色后放回,攪勻,再摸出一個球,通過大量重復(fù)試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在0.3左右,則m的值約為__________.13.大連市內(nèi)與莊河兩地之間的距離是160千米,若汽車以平均每小時80千米的速度從大連市內(nèi)開往莊河,則汽車距莊河的路程y(千米)與行駛的時間x(小時)之間的函數(shù)關(guān)系式為_____.14.如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點,tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點C,與AB交于點D,若△COD的面積為20,則k的值等于_____________.15.若一個圓錐的底面圓的周長是cm,母線長是,則該圓錐的側(cè)面展開圖的圓心角度數(shù)是_____.16.函數(shù)y=中自變量x的取值范圍是________,若x=4,則函數(shù)值y=________.三、解答題(共8題,共72分)17.(8分)如圖,已知平行四邊形ABCD,將這個四邊形折疊,使得點A和點C重合,請你用尺規(guī)做出折痕所在的直線。(保留作圖痕跡,不寫做法)18.(8分)如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=(1)求a,k的值及點B的坐標(biāo);(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;(3)在y軸上存在一點P,使得△PDC與△ODC相似,請你求出P點的坐標(biāo).19.(8分)一個不透明的袋子中裝有3個標(biāo)號分別為1、2、3的完全相同的小球,隨機(jī)地摸出一個小球不放回,再隨機(jī)地摸出一個小球.采用樹狀圖或列表法列出兩次摸出小球出現(xiàn)的所有可能結(jié)果;求摸出的兩個小球號碼之和等于4的概率.20.(8分)如圖,在矩形ABCD的外側(cè),作等邊三角形ADE,連結(jié)BE,CE,求證:BE=CE.21.(8分)如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=1.(1)實踐操作:尺規(guī)作圖,不寫作法,保留作圖痕跡.①作∠ABC的角平分線交AC于點D.②作線段BD的垂直平分線,交AB于點E,交BC于點F,連接DE、DF.(2)推理計算:四邊形BFDE的面積為.22.(10分)為改善生態(tài)環(huán)境,防止水土流失,某村計劃在荒坡上種1000棵樹.由于青年志愿者的支援,每天比原計劃多種25%,結(jié)果提前5天完成任務(wù),原計劃每天種多少棵樹?23.(12分)如圖,在△ABC中,AB=BC,CD⊥AB于點D,CD=BD.BE平分∠ABC,點H是BC邊的中點.連接DH,交BE于點G.連接CG.(1)求證:△ADC≌△FDB;(2)求證:(3)判斷△ECG的形狀,并證明你的結(jié)論.24.如圖,在等邊三角形ABC中,點D,E分別在BC,AB上,且∠ADE=60°.求證:△ADC~△DEB.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】延長線段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN與△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90°,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M(jìn)是△ABC的邊BC的中點,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故選C.2、D【解析】

抓住兩個特殊位置:當(dāng)BC與x軸平行時,求出D的坐標(biāo);C與原點重合時,D在y軸上,求出此時D的坐標(biāo),設(shè)所求直線解析式為y=kx+b,將兩位置D坐標(biāo)代入得到關(guān)于k與b的方程組,求出方程組的解得到k與b的值,即可確定出所求直線解析式.【詳解】當(dāng)BC與x軸平行時,過B作BE⊥x軸,過D作DF⊥x軸,交BC于點G,如圖1所示.∵等腰直角△ABO的O點是坐標(biāo)原點,A的坐標(biāo)是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐標(biāo)為(﹣1,3);當(dāng)C與原點O重合時,D在y軸上,此時OD=BE=1,即D(0,1),設(shè)所求直線解析式為y=kx+b(k≠0),將兩點坐標(biāo)代入得:,解得:.則這條直線解析式為y=﹣x+1.故選D.【點睛】本題屬于一次函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定一次函數(shù)解析式,等腰直角三角形的性質(zhì),坐標(biāo)與圖形性質(zhì),熟練運用待定系數(shù)法是解答本題的關(guān)鍵.3、A【解析】

關(guān)于y軸對稱的點的坐標(biāo)特征是縱坐標(biāo)不變,橫坐標(biāo)變?yōu)橄喾磾?shù).【詳解】點M(1,2)關(guān)于y軸對稱點的坐標(biāo)為(-1,2)【點睛】本題考查關(guān)于坐標(biāo)軸對稱的點的坐標(biāo)特征,牢記關(guān)于坐標(biāo)軸對稱的點的性質(zhì)是解題的關(guān)鍵.4、B【解析】試題分析:(4+x+3+30+33)÷3=7,解得:x=3,根據(jù)眾數(shù)的定義可得這組數(shù)據(jù)的眾數(shù)是3.故選B.考點:3.眾數(shù);3.算術(shù)平均數(shù).5、B【解析】

A、根據(jù)同底數(shù)冪的除法法則計算;

B、根據(jù)同底數(shù)冪的乘法法則計算;

C、根據(jù)積的乘方法則進(jìn)行計算;

D、根據(jù)合并同類項法則進(jìn)行計算.【詳解】解:A、a6÷a3=a3,故原題錯誤;B、3a2?2a=6a3,故原題正確;C、(3a)2=9a2,故原題錯誤;D、2x2﹣x2=x2,故原題錯誤;故選B.【點睛】考查同底數(shù)冪的除法,合并同類項,同底數(shù)冪的乘法,積的乘方,熟記它們的運算法則是解題的關(guān)鍵.6、B【解析】

根據(jù)三角形中位線定理求出DE,得到DF∥BM,再證明EC=EF=AC,由此即可解決問題.【詳解】在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,∴AC===10,∵DE是△ABC的中位線,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=2.故選B.7、B【解析】試題分析:如圖,翻折△ACD,點A落在A′處,可知∠A=∠A′=100°,然后由圓內(nèi)接四邊形可知∠A′+∠B=180°,解得∠B=80°.故選:B8、D【解析】

根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù),再根據(jù)平均數(shù)的計算公式求出平均數(shù)即可【詳解】∵4出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,∴眾數(shù)是4;這組數(shù)據(jù)的平均數(shù)是:(4+8+4+6+3)÷5=5;故選D.9、D【解析】試題分析:∵△ABC為等邊三角形,BP平分∠ABC,∴∠PBC=12∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC?tan∠PBC=3考點:1.角平分線的性質(zhì);2.等邊三角形的性質(zhì);3.含30度角的直角三角形;4.勾股定理.10、C【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和解答即可.【詳解】∵將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵點A,D,E在同一條直線上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故選C.【點睛】此題考查旋轉(zhuǎn)的性質(zhì),關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和解答.二、填空題(本大題共6個小題,每小題3分,共18分)11、﹣6或8【解析】試題解析:當(dāng)往右移動時,此時點A表示的點為﹣6,當(dāng)往左移動時,此時點A表示的點為8.12、3【解析】

在同樣條件下,大量重復(fù)實驗時,隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,列出等式解答.【詳解】解:根據(jù)題意得,=0.3,解得m=3.故答案為:3.【點睛】本題考查隨機(jī)事件概率的意義,關(guān)鍵是要知道在同樣條件下,大量重復(fù)實驗時,隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近.13、y=160﹣80x(0≤x≤2)【解析】

根據(jù)汽車距莊河的路程y(千米)=原來兩地的距離﹣汽車行駛的距離,解答即可.【詳解】解:∵汽車的速度是平均每小時80千米,∴它行駛x小時走過的路程是80x,∴汽車距莊河的路程y=160﹣80x(0≤x≤2),故答案為:y=160﹣80x(0≤x≤2).【點睛】本題考查了根據(jù)實際問題確定一次函數(shù)的解析式,找到所求量的等量關(guān)系是解題的關(guān)鍵.14、﹣24【解析】分析:如下圖,過點C作CF⊥AO于點F,過點D作DE∥OA交CO于點E,設(shè)CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,從而可得OA=5x,由已知條件易證S菱形ABCO=2S△COD=40=OA·CF=20x2,從而可得x=,由此可得點C的坐標(biāo)為,這樣由點C在反比例函數(shù)的圖象上即可得到k=-24.詳解:如下圖,過點C作CF⊥AO于點F,過點D作DE∥OA交CO于點E,設(shè)CF=4x,∵四邊形ABCO是菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴四邊形AOED和四邊形DECB都是平行四邊形,∴S△AOD=S△DOE,S△BCD=S△CDE,∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,∵tan∠AOC=,CF=4x,∴OF=3x,∴在Rt△COF中,由勾股定理可得OC=5x,∴OA==OC=5x,∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,∴OF=,CF=,∴點C的坐標(biāo)為,∵點C在反比例函數(shù)的圖象上,∴k=.故答案為:-24.點睛:本題的解題要點有兩點:(1)作出如圖所示的輔助線,設(shè)CF=4x,結(jié)合已知條件把OF和OA用含x的式子表達(dá)出來;(2)由四邊形AOCB是菱形,點D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.15、【解析】

利用圓錐的底面周長和母線長求得圓錐的側(cè)面積,然后再利用圓錐的面積的計算方法求得側(cè)面展開扇形的圓心角的度數(shù)即可【詳解】∵圓錐的底面圓的周長是,∴圓錐的側(cè)面扇形的弧長為cm,,解得:故答案為.【點睛】此題考查弧長的計算,解題關(guān)鍵在于求得圓錐的側(cè)面積16、x≥3y=1【解析】根據(jù)二次根式有意義的條件求解即可.即被開方數(shù)是非負(fù)數(shù),結(jié)果是x≥3,y=1.三、解答題(共8題,共72分)17、答案見解析【解析】

根據(jù)軸對稱的性質(zhì)作出線段AC的垂直平分線即可得.【詳解】如圖所示,直線EF即為所求.【點睛】本題主要考查作圖-軸對稱變換,解題的關(guān)鍵是掌握軸對稱變換的性質(zhì)和線段中垂線的尺規(guī)作圖.18、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】

1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,根據(jù)tan∠AOC的值,設(shè)AE=x,得到OE=3x,再由OA的長,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出A坐標(biāo),將A坐標(biāo)代入一次函數(shù)解析式求出a的值,代入反比例解析式求出k的值,聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出B的坐標(biāo);(2)由A與B交點橫坐標(biāo),根據(jù)函數(shù)圖象確定出所求不等式的解集即可;(3)顯然P與O重合時,滿足△PDC與△ODC相似;當(dāng)PC⊥CD,即∠PCD=時,滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對角相等,再由一對直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據(jù)OD,OC的長求出OP的長,即可確定出P的坐標(biāo).【詳解】解:(1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,OA=,tan∠AOC=,設(shè)AE=x,則OE=3x,根據(jù)勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標(biāo)代入一次函數(shù)y=ax﹣1中,得:1=3a﹣1,即a=,將A坐標(biāo)代入反比例解析式得:1=,即k=3,聯(lián)立一次函數(shù)與反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根據(jù)圖象得:不等式x﹣1≥的解集為﹣≤x<0或x≥3;(3)顯然P與O重合時,△PDC∽△ODC;當(dāng)PC⊥CD,即∠PCD=90°時,∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,對于一次函數(shù)解析式y(tǒng)=x﹣1,令x=0,得到y(tǒng)=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此時P坐標(biāo)為(0,),綜上,滿足題意P的坐標(biāo)為(0,)或(0,0).【點睛】此題屬于反比例函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定函數(shù)解析式,一次函數(shù)與反比例函數(shù)的交點問題,坐標(biāo)與圖形性質(zhì),勾股定理,銳角三角函數(shù)定義,相似三角形的判定與性質(zhì),利用了數(shù)形結(jié)合的思想,熟練運用數(shù)形結(jié)合思想是解題的關(guān)鍵.19、(1)見解析;(2).【解析】

(1)畫樹狀圖列舉出所有情況;

(2)讓摸出的兩個球號碼之和等于4的情況數(shù)除以總情況數(shù)即為所求的概率.【詳解】解:(1)根據(jù)題意,可以畫出如下的樹形圖:從樹形圖可以看出,兩次摸球出現(xiàn)的所有可能結(jié)果共有6種.(2)由樹狀圖知摸出的兩個小球號碼之和等于4的有2種結(jié)果,∴摸出的兩個小球號碼之和等于4的概率為=.【點睛】本題要查列表法與樹狀圖法求概率,列出樹狀圖得出所有等可能結(jié)果是解題關(guān)鍵.20、證明見解析.【解析】

要證明BE=CE,只要證明△EAB≌△EDC即可,根據(jù)題意目中的條件,利用矩形的性質(zhì)和等邊三角形的性質(zhì)可以得到兩個三角形全等的條件,從而可以解答本題.【詳解】證明:∵四邊形ABCD是矩形,∴AB=CD,∠BAD=∠CDA=90°,∵△ADE是等邊三角形,∴AE=DE,∠EAD=∠EDA=60°,∴∠EAD=∠EDC,在△EAB和△EDC中,EA=∴△EAB≌△EDC(SAS),∴BE=CE.【點睛】本題考查矩形的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.21、(1)詳見解析;(2).【解析】

(1)利用基本作圖(作一個角等于已知角和作已知線段的垂直平分線)作出BD和EF;(2)先證明四邊形BEDF為菱形,再利用含30度的直角三角形三邊的關(guān)系求出BF和CD,然后利用菱形的面積公式求解.【詳解】(1)如圖,DE、DF為所作;(2)∵∠C=90°,∠A=30°,∴∠ABC=10°,AB=2BC=2.∵BD為∠ABC的角平分線,∴∠DBC=∠EBD=30°.∵EF垂直平分BD,∴FB=FD,EB=ED,∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,∴DE∥BF,BE∥DF,∴四邊形BEDF為平行四邊形,而FB=FD,∴四邊形BEDF為菱形.∵∠DFC=∠FBD+∠FDB=30°+30°=10°,∴∠FDC=90°-10°=30°.在Rt△BDC中,∵BC=1,∠DBC=30°,∴DC=.在Rt△FCD中,∵∠FDC=30°,∴FC=2,∴FD=2FC=4,∴BF=FD=4,∴四邊形BFDE的面積=4×2=8.故答案為:8.【點睛】本題考查了作圖﹣基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).22、原計劃每天種樹40棵.【解析】

設(shè)原計劃每天種

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論