2024屆湖南省安仁縣重點中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第1頁
2024屆湖南省安仁縣重點中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第2頁
2024屆湖南省安仁縣重點中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第3頁
2024屆湖南省安仁縣重點中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第4頁
2024屆湖南省安仁縣重點中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆湖南省安仁縣重點中學(xué)中考數(shù)學(xué)最后一模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列命題是真命題的個數(shù)有()①菱形的對角線互相垂直;②平分弦的直徑垂直于弦;③若點(5,﹣5)是反比例函數(shù)y=圖象上的一點,則k=﹣25;④方程2x﹣1=3x﹣2的解,可看作直線y=2x﹣1與直線y=3x﹣2交點的橫坐標.A.1個 B.2個 C.3個 D.4個2.如圖,△ABC中AB兩個頂點在x軸的上方,點C的坐標是(﹣1,0),以點C為位似中心,在x軸的下方作△ABC的位似圖形△A′B′C′,且△A′B′C′與△ABC的位似比為2:1.設(shè)點B的對應(yīng)點B′的橫坐標是a,則點B的橫坐標是()A. B. C. D.3.下列四個實數(shù)中,比5小的是()A. B. C. D.4.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值25.下列運算中,正確的是()A.(ab2)2=a2b4B.a(chǎn)2+a2=2a4C.a(chǎn)2?a3=a6D.a(chǎn)6÷a3=a26.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是()A. B. C. D.7.關(guān)于?ABCD的敘述,不正確的是()A.若AB⊥BC,則?ABCD是矩形B.若AC⊥BD,則?ABCD是正方形C.若AC=BD,則?ABCD是矩形D.若AB=AD,則?ABCD是菱形8.下列圖形中,既是中心對稱,又是軸對稱的是()A. B. C. D.9.如圖是由4個相同的正方體搭成的幾何體,則其俯視圖是()A. B. C. D.10.下列各圖中,既可經(jīng)過平移,又可經(jīng)過旋轉(zhuǎn),由圖形①得到圖形②的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知一次函數(shù)y=ax+b和反比例函數(shù)的圖象相交于A(﹣2,y1)、B(1,y2)兩點,則不等式ax+b<的解集為__________12.利用1個a×a的正方形,1個b×b的正方形和2個a×b的矩形可拼成一個正方形(如圖所示),從而可得到因式分解的公式________.13.二次函數(shù)y=ax2+bx+c(a≠0)的部分對應(yīng)值如下表:x…﹣3﹣20135…y…70﹣8﹣9﹣57…則二次函數(shù)y=ax2+bx+c在x=2時,y=______.14.如圖,線段AB的長為4,C為AB上一個動點,分別以AC、BC為斜邊在AB的同側(cè)作兩個等腰直角三角形ACD和BCE,連結(jié)DE,則DE長的最小值是_____.15.已知是整數(shù),則正整數(shù)n的最小值為___16.如圖,BD是⊙O的直徑,∠CBD=30°,則∠A的度數(shù)為_____.17.將三角形紙片()按如圖所示的方式折疊,使點落在邊上,記為點,折痕為,已知,,若以點,,為頂點的三角形與相似,則的長度是______.三、解答題(共7小題,滿分69分)18.(10分)如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點D在線段BC上,AF平分DE交BC于點F,連接BE,EF.CD與BE相等?若相等,請證明;若不相等,請說明理由;若∠BAC=90°,求證:BF1+CD1=FD1.19.(5分)如圖,矩形ABCD中,O是AC與BD的交點,過O點的直線EF與AB、CD的延長線分別交于E、F.(1)證明:△BOE≌△DOF;(2)當EF⊥AC時,求證四邊形AECF是菱形.20.(8分)如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.(1)求該拋物線的解析式;(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標;若不存在,請說明理由;(3)當0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).21.(10分)計算:﹣(﹣2016)0+|﹣3|﹣4cos45°.22.(10分)某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球多15元,王老師從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?根據(jù)消費者需求,該網(wǎng)店決定用不超過8780元購進甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進價為50元,乙種羽毛球每筒的進價為40元.①若設(shè)購進甲種羽毛球m筒,則該網(wǎng)店有哪幾種進貨方案?②若所購進羽毛球均可全部售出,請求出網(wǎng)店所獲利潤W(元)與甲種羽毛球進貨量m(筒)之間的函數(shù)關(guān)系式,并說明當m為何值時所獲利潤最大?最大利潤是多少?23.(12分)先化簡,再求值:,其中x=-1.24.(14分)水果店老板用600元購進一批水果,很快售完;老板又用1250元購進第二批水果,所購件數(shù)是第一批的2倍,但進價比第一批每件多了5元,問第一批水果每件進價多少元?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)菱形的性質(zhì)、垂徑定理、反比例函數(shù)和一次函數(shù)進行判斷即可.【詳解】解:①菱形的對角線互相垂直是真命題;②平分弦(非直徑)的直徑垂直于弦,是假命題;③若點(5,-5)是反比例函數(shù)y=圖象上的一點,則k=-25,是真命題;④方程2x-1=3x-2的解,可看作直線y=2x-1與直線y=3x-2交點的橫坐標,是真命題;故選C.【點睛】本題考查了命題與定理:判斷一件事情的語句,叫做命題.許多命題都是由題設(shè)和結(jié)論兩部分組成,題設(shè)是已知事項,結(jié)論是由已知事項推出的事項,一個命題可以寫成“如果…那么…”形式.一些命題的正確性是用推理證實的,這樣的真命題叫做定理.2、D【解析】

設(shè)點B的橫坐標為x,然后表示出BC、B′C的橫坐標的距離,再根據(jù)位似變換的概念列式計算.【詳解】設(shè)點B的橫坐標為x,則B、C間的橫坐標的長度為﹣1﹣x,B′、C間的橫坐標的長度為a+1,∵△ABC放大到原來的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3),故選:D.【點睛】本題考查了位似變換,坐標與圖形的性質(zhì),根據(jù)位似變換的定義,利用兩點間的橫坐標的距離等于對應(yīng)邊的比列出方程是解題的關(guān)鍵.3、A【解析】

首先確定無理數(shù)的取值范圍,然后再確定是實數(shù)的大小,進而可得答案.【詳解】解:A、∵5<<6,∴5﹣1<﹣1<6﹣1,∴﹣1<5,故此選項正確;B、∵∴,故此選項錯誤;C、∵6<<7,∴5<﹣1<6,故此選項錯誤;D、∵4<<5,∴,故此選項錯誤;故選A.【點睛】考查無理數(shù)的估算,掌握無理數(shù)估算的方法是解題的關(guān)鍵.通常使用夾逼法.4、D【解析】設(shè)拋物線與x軸的兩交點間的橫坐標分別為:x1,x2,

由韋達定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.5、A【解析】

直接利用積的乘方運算法則以及合并同類項法則和同底數(shù)冪的乘除運算法則分別分析得出答案.【詳解】解:A、(ab2)2=a2b4,故此選項正確;B、a2+a2=2a2,故此選項錯誤;C、a2?a3=a5,故此選項錯誤;D、a6÷a3=a3,故此選項錯誤;故選:A.【點睛】此題主要考查了積的乘方運算以及合并同類項和同底數(shù)冪的乘除運算,正確掌握運算法則是解題關(guān)鍵.6、B【解析】

根據(jù)菱形的性質(zhì)得出△DAB是等邊三角形,進而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進而求出即可.【詳解】連接BD,∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設(shè)AD、BE相交于點G,設(shè)BF、DC相交于點H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF-S△ABD==.故選B.7、B【解析】

由矩形和菱形的判定方法得出A、C、D正確,B不正確;即可得出結(jié)論.【詳解】解:A、若AB⊥BC,則是矩形,正確;B、若,則是正方形,不正確;C、若,則是矩形,正確;D、若,則是菱形,正確;故選B.【點睛】本題考查了正方形的判定、矩形的判定、菱形的判定;熟練掌握正方形的判定、矩形的判定、菱形的判定是解題的關(guān)鍵.8、C【解析】

根據(jù)中心對稱圖形,軸對稱圖形的定義進行判斷.【詳解】A、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,也不是軸對稱圖形,故本選項錯誤;C、既是中心對稱圖形,又是軸對稱圖形,故本選項正確;D、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形,軸對稱圖形的判斷.關(guān)鍵是根據(jù)圖形自身的對稱性進行判斷.9、A【解析】試題分析:從上面看是一行3個正方形.故選A考點:三視圖10、D【解析】A,B,C只能通過旋轉(zhuǎn)得到,D既可經(jīng)過平移,又可經(jīng)過旋轉(zhuǎn)得到,故選D.二、填空題(共7小題,每小題3分,滿分21分)11、﹣2<x<0或x>1【解析】

根據(jù)一次函數(shù)圖象與反比例函數(shù)圖象的上下位置關(guān)系結(jié)合交點坐標,即可得出不等式的解集.【詳解】觀察函數(shù)圖象,發(fā)現(xiàn):當﹣2<x<0或x>1時,一次函數(shù)圖象在反比例函數(shù)圖象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.【點睛】本題主要考查一次函數(shù)圖象與反比例函數(shù)圖象,數(shù)形結(jié)合思想是關(guān)鍵.12、a1+1ab+b1=(a+b)1【解析】試題分析:兩個正方形的面積分別為a1,b1,兩個長方形的面積都為ab,組成的正方形的邊長為a+b,面積為(a+b)1,所以a1+1ab+b1=(a+b)1.點睛:本題考查了運用完全平方公式分解因式,關(guān)鍵是理解題中給出的各個圖形之間的面積關(guān)系.13、﹣1【解析】試題分析:觀察表中的對應(yīng)值得到x=﹣3和x=5時,函數(shù)值都是7,則根據(jù)拋物線的對稱性得到對稱軸為直線x=1,所以x=0和x=2時的函數(shù)值相等,解:∵x=﹣3時,y=7;x=5時,y=7,∴二次函數(shù)圖象的對稱軸為直線x=1,∴x=0和x=2時的函數(shù)值相等,∴x=2時,y=﹣1.故答案為﹣1.14、2【解析】試題分析:由題意得,DE=CD2+CE2;C為AB上一個動點,分別以AC、BC為斜邊在AB的同側(cè)作兩個等腰直角三角形△ACD和△BCE,AD=CD;CE=BE;由勾股定理得AC2=AD2+CD2考點:不等式的性質(zhì)點評:本題考查不等式的性質(zhì),會用勾股定理,完全平方公式,不等關(guān)系等知識,它們是解決本題的關(guān)鍵15、1【解析】

因為是整數(shù),且,則1n是完全平方數(shù),滿足條件的最小正整數(shù)n為1.【詳解】∵,且是整數(shù),

∴是整數(shù),即1n是完全平方數(shù);

∴n的最小正整數(shù)值為1.

故答案為:1.【點睛】主要考查了二次根式的定義,關(guān)鍵是根據(jù)乘除法法則和二次根式有意義的條件.二次根式有意義的條件是被開方數(shù)是非負數(shù)進行解答.16、60°【解析】解:∵BD是⊙O的直徑,∴∠BCD=90°(直徑所對的圓周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的兩個銳角互余),∴∠A=∠D=60°(同弧所對的圓周角相等);故答案是:60°17、或2【解析】

由折疊性質(zhì)可知B’F=BF,△B’FC與△ABC相似,有兩種情況,分別對兩種情況進行討論,設(shè)出B’F=BF=x,列出比例式方程解方程即可得到結(jié)果.【詳解】由折疊性質(zhì)可知B’F=BF,設(shè)B’F=BF=x,故CF=4-x當△B’FC∽△ABC,有,得到方程,解得x=,故BF=;當△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;綜上BF的長度可以為或2.【點睛】本題主要考查相似三角形性質(zhì),解題關(guān)鍵在于能夠?qū)蓚€相似三角形進行分類討論.三、解答題(共7小題,滿分69分)18、(1)CD=BE,理由見解析;(1)證明見解析.【解析】

(1)由兩個三角形為等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根據(jù)“SAS”可證得△EAB≌△CAD,即可得出結(jié)論;(1)根據(jù)(1)中結(jié)論和等腰直角三角形的性質(zhì)得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后證得EF=FD,BE=CD,等量代換即可得出結(jié)論.【詳解】解:(1)CD=BE,理由如下:∵△ABC和△ADE為等腰三角形,∴AB=AC,AD=AE,∵∠EAD=∠BAC,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠CAD,在△EAB與△CAD中,∴△EAB≌△CAD,∴BE=CD;(1)∵∠BAC=90°,∴△ABC和△ADE都是等腰直角三角形,∴∠ABF=∠C=45°,∵△EAB≌△CAD,∴∠EBA=∠C,∴∠EBA=45°,∴∠EBF=90°,在Rt△BFE中,BF1+BE1=EF1,∵AF平分DE,AE=AD,∴AF垂直平分DE,∴EF=FD,由(1)可知,BE=CD,∴BF1+CD1=FD1.【點睛】本題考查了全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),勾股定理等知識,結(jié)合題意尋找出三角形全等的條件是解決此題的關(guān)鍵.19、(1)(2)證明見解析【解析】

(1)根據(jù)矩形的性質(zhì),通過“角角邊”證明三角形全等即可;(2)根據(jù)題意和(1)可得AC與EF互相垂直平分,所以四邊形AECF是菱形.【詳解】(1)證明:∵四邊形ABCD是矩形,∴OB=OD,AE∥CF,∴∠E=∠F(兩直線平行,內(nèi)錯角相等),在△BOE與△DOF中,,∴△BOE≌△DOF(AAS).(2)證明:∵四邊形ABCD是矩形,∴OA=OC,又∵由(1)△BOE≌△DOF得,OE=OF,∴四邊形AECF是平行四邊形,又∵EF⊥AC,∴四邊形AECF是菱形.20、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點坐標為(,)時,△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標,利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點坐標及對稱軸,可設(shè)出M點坐標,表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點坐標的方程,可求得M點的坐標;(3)過E作EF⊥x軸,交直線BC于點F,交x軸于點D,可設(shè)出E點坐標,表示出F點的坐標,表示出EF的長,進一步可表示出△CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時E點的坐標.試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點B、點C,∴B(3,0),C(0,3),把B、C坐標代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對稱軸為x=2,P(2,﹣1),設(shè)M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當MC=MP時,則有=|t+1|,解得t=,此時M(2,);②當MC=PC時,則有=2,解得t=﹣1(與P點重合,舍去)或t=7,此時M(2,7);③當MP=PC時,則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時M(2,﹣1+2)或(2,﹣1﹣2);綜上可知存在滿足條件的點M,其坐標為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如圖,過E作EF⊥x軸,交BC于點F,交x軸于點D,設(shè)E(x,x2﹣4x+3),則F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴當x=時,△CBE的面積最大,此時E點坐標為(,),即當E點坐標為(,)時,△CBE的面積最大.考點:二次函數(shù)綜合題.21、1.【解析】

根據(jù)二次根式性質(zhì),零指數(shù)冪法則,絕對值的代數(shù)意義,以及特殊角的三角函數(shù)值依次計算后合并即可.【詳解】解:原式=1﹣1+3﹣4×=1.【點睛】本題考查實數(shù)的運算及特殊角三角形函數(shù)值.22、(1)該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)①進貨方案有3種,具體見解析;②當m=78時,所獲利潤最大,最大利潤為1390元.【解析】【分析】(1)設(shè)甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,由條件可列方程組,則可求得答案;(2)①設(shè)購進甲種羽毛球m筒,則乙種羽毛球為(200﹣m)筒,由條件可得到關(guān)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論